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ABSTRACT  

Background and Objectives: Critically ill patients require individualized nutrition support, 

with assessment tools like Nutrition Risk Screening 2002 and Nutrition Risk in the Critically 

Ill scores. Challenges in continuous nutrition care prompt the need for innovative solutions. 

This study develops an artificial intelligence assisted nutrition risk evaluation model using 

explainable machine learning to support intensive care unit dietitians. Methods and Study 

Design: Ethical approval was obtained for a retrospective analysis of 2,122 patients. Nutrition 

risk assessment involved six dietitians, with 1,994 patients assessed comprehensively. 

Artificial intelligence models and shapley additive explanations analysis were used to predict 

and understand nutrition risk. Results: High nutrition risk (35.16%) correlated with elder age, 

lower body weight, BMI, albumin, and higher disease severity. The AUROC scores achieved 

by XGBoost (0.921), CatBoost (0.926), and LightGBM (0.923) were superior to those of 

Logistic Regression. Key features influencing nutrition risk included Acute Physiology and 

Chronic Health Evaluation II score, albumin, age, BMI, and hemoglobin. Conclusions: The 

study introduces an artificial intelligence assisted nutrition risk evaluation model, offering a 

promising avenue for continuous and timely nutrition support in critically ill patients. 

External validation and exploration of feature relationships are needed. 

 

Key Words: artificial intelligence, machine learning, nutritional risk, ICU, critical 

illness 

 

INTRODUCTION 

Critically ill patients are highly heterogeneous, and there is no one-size-fits-all approach to 

nutrition support that can be applied universally. However, most researchers agree that 

patients with a high nutrition risk require aggressive nutrition support to improve their 

outcomes. American Society for Parenteral and Enteral Nutrition guideline suggested using 

Nutrition Risk Screening 2002 (NRS2002)、Nutrition Risk in the Critically Ill (NUTRIC) 

score to screen high nutrition risk patients.1 In the European Society for Parenteral and 

Enteral Nutrition guidelines, there is no gold standard for defining nutrition risk. However, 

patients who have been admitted to the intensive care unit for longer than 48 hours are 

assumed to be at risk for malnutrition.2,3 

The NUTRIC score includes age, Acute Physiology and Chronic Health Evaluation II 

(APACHE II) score, Sequential Organ Failure Assessment (SOFA) score, comorbidities, 
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Interleukin-6 (IL-6) levels, and days from hospital admission to intensive care unit (ICU) 

admission.4 However, for practical purposes, IL-6 is often neglected.5 Notably, the NUTRIC 

score includes disease severity scores instead of significant nutrition markers. The NRS2002 

takes into account BMI, body weight loss, appetite, and disease severity, but it is not well 

validated in critically ill patients.6    

Registered dietitians in the ICU play a crucial role in the comprehensive evaluation of 

nutrition risk in critically ill patients. However, in the real world, continuity of nutrition care 

in the ICU can be a problem during nighttime and holidays due to a shortage of staff.7,8 

Registered dietitians are facing increasingly more challenges, especially during the 

Coronavirus disease 2019 (COVID-19) pandemic.9 

Recently, artificial intelligence and machine learning have been widely used in medical 

care to assist with clinical decision-making and improve care efficiency.10 For example, 

Sharma et al. demonstrated the use of machine learning methods to identify patients at risk of 

malnutrition, while Wang et al. reported on an artificial intelligence-assisted tool for 

evaluating nutritional status in elderly patients.11,12 Yin et al. also developed a machine 

learning-assisted decision-making system to recognize malnutrition in cancer patients.13 

However, these studies have mainly focused on elderly or cancer patients rather than critically 

ill patients and did not utilize interpretable machine learning to aid in decision-making. If 

artificial intelligence can simulate the work of registered dietitians, it could provide 

continuous nutrition support for critically ill patients.  

The present study aims to develop an artificial intelligence-assisted nutrition risk evaluation 

model using explainable machine learning methods to support the work of registered 

dietitians in the ICU.  

 

MATERIALS AND METHODS 

Ethical approval 

This study was approved by the Institutional Review Board of the Taichung Veterans General 

Hospital (TCVGH: CE21134A). All data were obtained from electronic medical records and 

de-linked before analyses. Informed consent was waived because of the de-linked data was 

retrieved retrospectively. 

 

Study population 

This study was conducted at TCVGH, a tertiary-care referral hospital in central Taiwan, from 

January 2016 to December 2019. Inclusion criteria comprised respiratory failure requiring 
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ventilator support and ICU admission. Exclusion criteria included ICU stays less than 3 days, 

age less than 20 years, Human Immunodeficiency Virus (HIV) or pregnant patients. (Figure 

1). A total of 1,994 patients meeting the criteria were screened from 2,122 potential 

candidates. 

 

Nutrition risk assessment consensus 

The definition of high nutritional risk in our study is based on the clinical experience of 

dietitians, incorporating both established guidelines and practical considerations in ICU 

settings. To establish a consensus definition, we engaged six senior dietitians with over 10 

years of ICU experience. The process included the integration of multiple guidelines and tools, 

such as the NRS 2002 score, the NUTRIC score, the 2019 ESPEN guideline, and an 

evaluation of potential refeeding syndrome. Nutritional risk was assessed across four 

dimensions: nutritional status, disease severity, age, and the presence of pressure ulcers. Each 

dimension was scored on a scale of 1 to 3 according to severity, and through three rounds of 

consensus meetings, a threshold score of ≥5 was determined to classify patients as at high 

nutritional risk. This approach sought to balance clinical rigor with feasibility in clinical 

workflow. The inter-rater reliability, assessed using Fleiss' kappa, was 0.64, indicating 

substantial agreement. 

 

Variables categorized by main clinical domains 

The dataset was collected by dietitians from electronic medical records, capturing data 24 

hours before ICU admission and 48 hours after ICU admission. It includes demographic 

information such as age and sex, anthropometric data like height and body weight, 

biochemical markers such as serum albumin level, basic laboratory results, disease severity 

scores including APACHE II and SOFA scores, and information on comorbidities. Outcome 

measures encompassed hospital mortality, length of ventilator dependency, ICU stay, and 

total hospital stay. 

 

Building the prediction model 

We randomly selected 80% patients for model training and validation using 5-fold cross-

validation, and the other 20% for model evaluation. (Figure 2). Four algorithms including 

Extreme Gradient Boosting (XGBoost)、Categorical Boosting (CatBOOST), Light Gradient 

Boosting Machine (LightGBM), and Logistic regression were selected for model 
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determination. Predictive features included demographic data, clinical indicators, and other 

variables typically used by dietitians. The outcome was the nutritional risk classification 

assigned by the dietitians. Additionally, we employed a wrapper feature selection approach 

and identified that the top five features yielded the highest accuracy.  

 

Shapley Additive Explanations (SHAP) 

SHAP is a game-theoretic approach for explaining the output of an machine learning  

model.14 It combines optimal credit allocation with local explanations by utilizing classic 

Shapley values from game theory and their relevant extensions. Shapley values, widely 

employed in cooperative game theory, possess desirable properties. SHAP values offer a 

comprehensive method to explain the results of our ML model and provide consistent and 

locally accurate attribution values for each feature. In our study, SHAP is used to explore the 

relationship between the nutritional risk outcome and features. 

 

Statistical analysis 

Data analysis was conducted using SPSS software (version 22.0; International Business 

Machines Corp., Armonk, NY, USA). A p-value of ≤ 0.05 was established as statistically 

significant. Continuous data were expressed as mean ± standard deviation. Categorical 

variables were described as counts and percentages. A comparison of interval data between 

the high and low nutritional risk groups was performed using the t-test or chi-square test. 

Python version 3.6.9 was utilized to evaluate the discrimination, accuracy, and applicability of 

the models in the testing sets using receiver operating characteristic curve analysis and 

decision curve. 

 

RESULTS 

Demographic data 

A total of 1,994 patients were enrolled and 65 features were selected in this study. The mean 

age was 65.6 ± 16.32 years, and 35.41% (706/1994) of patients was female. 701 patients were 

belonging to high nutritional risk group (35.16%). 

 Patients with high nutritional risk were associated with elder age (72.83 ± 14.58 vs. 61.68 

± 15.87, p < 0.01), lower body weight (58.58 ± 12.58 vs. 64.44 ± 14.20, p < 0.01), lower BMI 

(22.72 ± 4.52 vs. 24.28 ± 4.79, p < 0.01) and lower albumin (2.58 ± 0.57 vs. 3.14 ± 0.64, p < 

0.01) compared to patients with low nutritional risk group. (Table 1) 
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 Disease severity such as APACHE II and SOFA score were higher in high nutritional risk 

group compared to low nutritional group patients. The clinical outcomes including ICU days, 

ventilator use days, hospital days, and mortality were significantly worse in high nutritional 

risk group patients. (Table 1) 

 

Explanation of the model 

The performance of the model 

Four classification algorithms were trained using 5-fold cross-validation. The results are 

summarized in table 2. By comparing the results of all features in training dataset, we found 

that XGBoost and Catboost performed similarly and were the top performers across most 

metrics, particularly in terms of Precision, Sensitivity, and area under receiver operating 

characteristic curve (AUROC) in the 5-fold cross-validation. LightGBM followed closely, 

while Logistic Regression showed notably lower performance, especially in Specificity and 

AUROC. In the testing dataset, the performance metrics of the algorithms slightly decreased 

but still remained relatively high. The decision curve of the four algorithms in test dataset are 

shown in figure 3. We found that Catboost, XGBoost, and LightGBM models exhibited 

higher net benefit than logistic regression as well as default strategies of treating all patients 

or no patients. 

 

SHAP summary plot 

To enable the visualized interpretation of key features of the model, we used a SHAP plot to 

illustrate how these features affect nutrition risk. Figure 4a illustrated the SHAP plot ranks 

features based on their overall impact on the prediction. The features are listed top-down with 

decreasing importance. Only the top 20 features are listed, and categorical variables are split 

into one bar per category. We found that APACHE II, Albumin, age, BMI, and Hemoglobin 

are the characteristics that have the greatest influence on nutritional risk. 

Figure 4b illustrates a small observed value of the characteristic factor. Features with 

higher total SHAP values (red) had a stronger influence on increasing the prediction, while 

those with lower values (blue) had a greater effect on decreasing it. The x-axis displays the 

individual SHAP values for each patient. The results show that APACHE II score and age are 

positively correlated with the nutritional risk. Albumin, BMI, and Hemoglobin are negatively 

correlated with the nutritional risk. 
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SHAP dependence plot  

We further used SHAP dependence plot to illustrate how the top 5 features influenced the 

outcome of nutritional risk (Figure 5). In SHAP dependence plot, each point represents an 

individual patient, thereby illustrating how the attribution importance of baseline variables 

varies with their values. The SHAP values exceeding zero represented an increased risk of 

nutrition.  

We found that age is about less than 70 (Figure 5a), APACHE II is about less than 25 

(Figure 5b), which is predicted to be a low nutritional risk; on the contrary, BMI is about less 

than 20 (Figure 5c), Alb is about less than 3 (Figure 5d), and and Hgb approximately below 

11 (Figure 5e) predict high nutritional risk. 

 

SHAP individual force plots 

We selected two patients for analysis using SHAP individual force plots. In Figure 6a, the AI 

predicted a high nutritional risk, contrary to the dietitian's assessment of low risk. The AI 

model considered five features (Age, APACHE II, BMI, Albumin, Hemoglobin), all leaning 

towards a high nutritional risk, cumulatively predicting a 96% probability of high risk. 

Despite the patient's severe illness, their nutritional status was good, leading the dietitian to 

assess them as low risk. In Figure 6b, the AI predicted a low nutritional risk, while the 

dietitian deemed it high risk. Within the AI model, three features (age, BMI, Hemoglobin) 

inclined towards low risk, while APACHE II and albumin tended towards high risk, resulting 

in an overall prediction of only an 18% probability of high risk. Although the severity of the 

disease was low, the patient's nutritional condition was poor, prompting the dietitian to 

consider it high risk. 

 

Comparative performance with the NUTRIC score 

To evaluate the predictive performance of the dietitian-assessed nutrition risk model, we 

compared it to the NUTRIC score in predicting ICU stays exceeding 7 days using our dataset. 

Both models were assessed using receiver operating characteristic (ROC) curves, with the 

Area Under the Curve (AUC) as the performance metric. 

While both models achieved AUC values above 0.5, indicating predictive capability, the 

dietitian-assessed model demonstrated slightly superior discrimination with higher AUC 

values, despite the modest differences. These findings suggest that the dietitian-assessed 

model may offer a more nuanced and clinically relevant tool for identifying high-risk patients 
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in ICU settings, particularly for predicting prolonged ICU stays, compared to the NUTRIC 

score. (Figure 7). 

 

DISCUSSION 

In the study, we identified the predictive risk factors for nutrition in critically ill patients and 

developed a machine learning-based predictive model. Our findings revealed that models such 

as XGBoost, CatBoost, and LightGBM yielded superior predictive performance. These results 

underscore the efficacy of high-performance gradient boosting frameworks in accurately 

identifying nutritional risks.  

We further utilized explainable AI methods to identify key features associated with 

nutritional risk, yielding results that align with prior research. For example, previous studies 

have indicated a link between nutritional risk, low BMI, and adverse health outcomes, 

including increased mortality.15,16 Additionally, a positive correlation was observed between 

high nutritional risk and elevated APACHE II scores.17 Furthermore, the introduction of 

nutritional support was found to significantly improve disease severity.18 The findings suggest 

that the predictive model shows promise in identifying clinical nutrition-related risks. While 

the results are encouraging, further validation is required to fully confirm its effectiveness in 

clinical settings.  

The prognosis for malnutrition in critically ill patients is undoubtedly poor. However, 

inflammation during the acute stage may be a reason why critically ill patients require 

nutrition support.2,19 Theoretically, critically ill patients with high nutrition risk would recover 

well after receiving optimal nutrition support. The Heyland et al observational study 

demonstrated that higher caloric intake reduced mortality in high nutrition risk patients.4 

However, a subsequent randomized controlled trial prescribed full caloric feeding or trophic 

feeding in high nutrition risk patients, with hospital mortality rates of 24% and 19%, 

respectively.20 The hospital mortality rate seemed higher in the full caloric feeding group, but 

this difference did not reach statistical significance. In a post-hoc analysis of the Permissive 

Underfeeding versus Target Enteral Feeding in Adult Critically Ill Patients (PermiT) study, 

there was no difference in 90-day mortality between high and low nutrition risk patients who 

received permissive underfeeding.21 The NUTRIC score consists of only six items, which 

may make it difficult to accurately identify patients with high nutrition risk with limited 

information.  

Implementation of feeding protocols is another form of nutrition support that can help 

overcome feeding barriers. Feeding protocols can improve the efficiency of caloric intake.22 In 
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a large randomized controlled trial, Ke et al. optimized nutrition support by implementing an 

evidence-based feeding guideline.23 The eligible patients had at least one more organ system 

failure and expected ICU stay of more than 7 days. The intervention group received more 

enteral nutrition and less parenteral nutrition in the first 2 days, but the intervention did not 

result in a significant reduction in 28-day all-cause mortality. The study did not find any 

improvement in outcomes, despite using many evidence guided interventions, including 

NUTRIC score. Conversely, the NRS 2002 does include some nutrition parameters but lacks 

specific items for critically ill patients. Combining the NUTRIC and NRS 2002 scores did not 

yield better predictive values either.24 Due to the complexity of critically ill patients, current 

nutrition risk evaluation tools might not suffice to replace the role of a registered dietitian in 

rating the nutrition risk of ICU patients.  

Our study found differences in clinical outcomes based on the nutrition risk groups as 

labeled by registered dietitians. However, it's worth noting that nutrition risk evaluation alone 

may not fully predict clinical outcomes without considering the impact of nutrition support.25-

28 The purpose of nutrition risk evaluation should be to guide clinicians in providing 

appropriate nutrition support. Due to the retrospective design of our study, we were unable to 

provide detailed information on caloric intake for each nutrition risk group.   

However, it is not feasible for a registered dietitian to be available 24/7 in the ICU, while 

an AI system could be. We can develop a nutrition risk prediction model by training AI to 

emulate the practices of registered dietitians in the ICU. In recent years, artificial intelligence 

and machine learning methods have been widely used in critically ill patients.10 However, few 

artificial intelligence models have been introduced to predict nutrition status in critically ill 

patients, with most models focusing on cancer patients.13 Given the complexity of critically ill 

patients and shortage of healthcare personnel, an artificial intelligence model to help 

intensivists assess nutrition risk in critically ill patients is imperative.29 Our study has 

addressed this gap by developing a nutrition risk prediction model 

In our final model, we found that APACHE II, age, BMI, albumin, and hemoglobin were 

the five major features that influence nutrition risk. However, hemoglobin is a rare item in 

terms of assessing nutrition risk for registered dietitians. Anemia is common in critically ill 

patients, with approximately two-thirds of patients having hemoglobin levels less than 12 

g/dL upon admission to the ICU.30,31 There are several reasons for anemia in ICU patients, 

including bleeding, chronic disease, and malnutrition, among others. Wu et al reported that 

critically ill patients with hemoglobin levels less than 10 g/dL were associated with higher 

one-year mortality in the surgical ICU.32 Rasmussen et al demonstrated that hemoglobin 
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levels less than 10 g/dL were associated with greater than 2.6 times higher 90-day mortality in 

patients with chronic obstructive pulmonary disease and respiratory failure.33 Taken together, 

anemia may be one of the risk factors for poor outcomes in critically ill patients, which is 

consistent with our present findings. However, a well-conducted study is still needed to 

establish the relationship between anemia and nutrition risk. 

Our research revealed instances where prediction results differed from dietitians' 

assessments. Two key reasons contribute to this discrepancy. Albumin Initially considered a 

robust nutritional indicator, Albumin was later found to be influenced by inflammation in the 

blood, leading to value decreases due to redistribution. Consequently, many nutrition 

screening tools exclude albumin. However, the 2021 American Society for Parenteral and 

Enteral Nutrition guidelines reintroduced Alb as a relevant marker for inflammation and 

malnutrition.34 Nonetheless, its accuracy can be compromised if patients receive albumin 

injections when transitioning from a ward to an ICU. 

Dietitians often rely on the patient's food intake status and weight changes before ICU 

admission to assess nutritional risks. However, this information is frequently described in text 

rather than systematically recorded, making it challenging to incorporate into machine 

learning features.  

While our study demonstrated that artificial intelligence significantly aids registered 

dietitians with impressive accuracy, it is important to acknowledge certain limitations. First, 

our study was conducted at a single center, and although our model exhibits high accuracy, 

external validation is essential to fortify the robustness of our present model. Second, certain 

informative features are recorded in language by nursing staff, and we have not yet analyzed 

this information without employing a natural language processing model. Third, the currently 

available data did not include information on body weight loss status prior to admission. 

Nevertheless, our dataset, collected from 1,994 patients who underwent comprehensive 

nutritional risk assessment, was labeled by six experienced dietitians after achieving 

consensus and has demonstrated good inter-rater reliability. 

 

Conclusions 

Machine learning is emerging as a novel contributor to clinical nutrition. Employing machine 

learning to predict patients' nutritional risk not only addresses the shortage of dietitians and 

the absence of clinical nutrition care during holidays but also provides healthcare 

professionals with insights into patients' nutritional status. This allows for increased attention 

and more timely, accurate nutritional support for patients at high nutritional risk.  
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Table 1. Patients’ demographic characteristics, severity score, clinical outcomes 
 
 
Variables 

All 
(n = 1994) 

High nutritional 
risk group 
(n = 701) 

Low nutritional 
risk group 
(n = 1293) 

p-value 

Demographic data     
 Age (years) 65.60±16.32 72.83±14.58 61.68±15.87 <0.001** 

 Sex (female) 706 (35.41%) 262 (37.38%) 444 (34.34%) 0.192 
 Weight (kg) 62.38±14.02 58.58±12.85 64.44±14.20 <0.001** 

 Body mass index 23.73±4.75 22.72±4.52 24.28±4.79 <0.001** 

 Albumin (mg/dL) 2.92±0.67 2.58±0.57 3.14±0.64 <0.001** 

Comorbidities (n,%)     
 Diabetes mellitus 658 (33.0%) 256 (36.52%) 402 (31.09%) 0.016* 

 Liver cirrhosis  157 (7.87%) 70 (9.99%) 87 (6.73%) 0.013* 

 Uremia  633 (31.75%) 287 (40.94%) 346 (26.76%) <0.001** 

 Central nerve system  disorder  407 (20.41%) 142 (20.26%) 265 (20.49%) 0.946 
 Chronic lung disease  300 (15.05%) 126 (17.97%) 174 (13.46%) 0.009** 

 Immunocompromised disorders  175 (8.78%) 76 (10.84%) 99 (7.66%) 0.021* 

 Any malignancy, including lymphoma 
and leukemia, except malignant 
neoplasm of skin  

661 (33.15%) 273 (38.94%) 388 (30.01%) <0.001** 

 Congestive heart failure  358 (17.95%) 143 (20.4%) 215 (16.63%) 0.042* 

 Chronic lung disease  300 (15.05%) 126 (17.97%) 174 (13.46%) 0.009** 

Disease severity scores     
 APACHE II score 23.78±7.80 29.37±5.62 20.42±6.96 <0.001** 

 SOFA score 7.55±3.91 9.54±3.69 6.46±3.59 <0.001** 

Clinical outcome     
 Length of ICU stay (day) 10.34±10.14 13.36±10.62 8.70±9.48 <0.001** 

 Length of ventilator dependency (day) 5.27±10.97 7.49±12.43 4.06±9.89 <0.001** 

 Length of hospital stay (day) 27.01±27.34 31.42±25.69 24.62±27.91 <0.001** 
 Hospital mortality 478(23.97%) 252(35.95%) 226(17.48%) <0.001** 
ICU (n,%)    <0.001** 
 Medical 1432 (71.82%) 562 (80.17%) 870 (67.29%)  
 Surgical 562 (28.18%) 139 (19.83%) 423 (32.71%)  
 
Values are mean ± SD. APACHE II: Acute Physiology and Chronic Health Evaluation II; SOFA: Sequential Organ Failure 
Assessment. ICU: intensive care unit 
* p < 0.05, ** p < 0.01. 
 
 
 
Table 2. Model performance using full features 
 

 
XGBoost, eXtreme Gradient Boosting; CatBoost, Categorical Boosting; LightGBM, Light Gradient Boosting Machine; AUROC, 
area under the receiver operating characteristic curve; CV, cross-validation. 

Classifier Precision Sensitivity Specificity Accuracy AUROC 
5-fold CV      
 XGBoost 0.832 ± 0.039 0.915 ± 0.020 0.780 ± 0.044 0.868 ± 0.027 0.928 ± 0.023 
 CatBoost 0.832 ± 0.039 0.916 ± 0.018 0.771 ± 0.059 0.865 ± 0.031 0.932 ± 0.024 
 LightGBM 0.803 ± 0.039 0.897 ± 0.022 0.780 ± 0.046 0.856 ± 0.027 0.925 ± 0.025 
 Logistic Regression 0.737 ± 0.069 0.872 ± 0.040 0.655 ± 0.069 0.796 ± 0.040 0.863 ± 0.035 
Testing      
 XGBoost 0.779 0.876 0.801 0.850 0.921 
 CatBoost 0.803 0.888 0.837 0.869 0.926 
 LightGBM 0.784 0.876 0.823 0.857 0.923 
 Logistic Regression 0.713 0.849 0.688 0.792 0.852 
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Figure 1. Flowchart of subject enrollment. TCVGH: Taichung Veterans General Hospital; HIV: Human Immunodeficiency Virus; 
ICU: Intensive Care Unit. 
 
 

 
 
Figure 2. The flow diagram of the study 
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Figure 3. Receiver operating characteristics curves and decision curve analysis 

 

 

 
 
Figure 4. Global interpretation of Catboot. The APACHE II scores and age were positively correlated with nutritional risk, while 
albumin (Alb), BMI, and Hemoglobin (Hgb) levels were negatively correlated with nutritional risk 
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Figure 5. SHAP dependence plot of the CatBoost model in predicting nutrition risk. (a) Age, (b) APACHE II, (c) BMI, (d) albumin 
(ALB), (e) Hemoglobin (HGB) 
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Figure 6. Force plots for a patient: (a) predicted to be at high risk, but assessed as low risk by the dietitian (prediction 0.96). (b) 
predicted to be at low risk, yet considered high risk by the dietitian (prediction 0.18) 
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Figure 7. Comparative performance of dietitian-assessed nutrition risk and the NUTRIC score 
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