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ABSTRACT  

Background and Objectives: Type 2 diabetes mellitus (T2DM) has emerged as a significant 

global public health concern. Multiple studies have shown that traditional nutraceuticals are 

potential to treat T2DM and its complications. This review will explore traditional 

nutraceuticals with antidiabetic properties with a focus on Asian traditional nutraceuticals and 

their antioxidant effects on gene expression associated to T2DM. Methods and Study 

Design: Literature searching was conducted in Pubmed, Scopus, and Science Direct using the 

keywords “nutraceutical”, “antidiabetic”, "insulin resistance", "Diabetes Mellitus", "herbal 

medicine", “mechanism”, “pathway”, "traditional food", "functional food", “antioxidant”, 

“clinical”, “preclinical”, "animal studies", and “Asian” combined with Boolean operators 

“OR”. Results: Nutraceuticals sourced from traditional Indonesian herbal beverages, 

including Galohgor, Bir Pletok, and Wedang Uwuh, have shown potential efficacy in 

reducing hyperglycemia, oxidative stress, and obesity in Type 2 Diabetes Mellitus (T2DM). 

Furthermore, multiple Asian plants and their bioactive compounds, such as curcumin, 

kaempferol, cinnamon, saponin, quercetin, myricetin, anthocyanin, terpenoid, alkaloid, and 

gallic acid, have been shown to beneficially influence glucose homeostasis, insulin sensitivity, 

and problems associated with diabetes. Moreover, bioactive compounds of these traditional 

nutraceuticals have been proven in modulating gene expression associated with β-cell 

function, insulin signaling pathway, and antioxidant activity, which may offer a new 

therapeutic target. Conclusions: This review highlights the increasing scientific evidence on 

the role of traditional nutraceuticals for the prevention and management of diabetes mellitus, 

presenting promising alternatives to standard pharmacological therapy. Nonetheless, double-

blind randomized clinical trials are required to validate these antidiabetic effects. 

 

Key Words: antioxidants, Asian traditional nutraceutical, gene expression, oxidative 

stress, type 2 diabetes mellitus 

 

INTRODUCTION 

Diabetes mellitus has become a major global public health issue, with a notable rise in its 

prevalence, which has quadrupled in the last three decades.1 The global prevalence of diabetes 

among individuals aged 20–79 was estimated at 10.5%, affecting approximately 536.6 million 

people. This figure is projected to rise to 12.2% (783.2 million) by 2045. Diabetes rates were 

comparable between men and women, with the highest prevalence observed in the 75–79 age 

group. The prevalence in urban areas (12.1%) was higher than in rural areas (8.3%), and 
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diabetes was more common in high-income countries (11.1%) compared to low-income 

nations (5.5%). The most significant relative increase in diabetes prevalence between 2021 

and 2045 is expected in middle-income countries (21.1%), outpacing high-income (12.2%) 

and low-income (11.9%) nations.2,3   

Diabetes mellitus is a burdensome disease due to its long-term complications and potential 

to cause disability. It is also the ninth primary cause of death.1 In 2021, it is estimated that 6.7 

million deaths worldwide were related to diabetes in the 20–79 years age range.4 Furthermore, 

the global direct healthcare expenditure on diabetes for 20–79 years old people was estimated 

to be USD 966 billion in 2021 and is projected to increase to USD 1054 billion by 2045.2 The 

long-term complication of diabetes mellitus involved micro- and macrovascular 

complications, including cardiovascular complications, kidney failure, and cerebral 

complications.5 

Current treatment for type 2 diabetes mellitus (T2DM) involves pharmacological therapy 

and lifestyle modification. There were several groups of antidiabetic drugs, i.e. insulin 

sensitizers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulfonylureas, 

meglitinides), alpha-glucosidase inhibitors, as well as the latest incretin-based therapies and 

sodium-glucose co-transporter 2 inhibitors.6   

Due to the potential adverse effects of long-term medication use, natural therapeutic 

approaches, such as nutraceuticals, have gained increasing attention as complementary or 

alternative treatments for diabetes.6,7 Nutraceuticals are products containing food extracts or 

bioactive components that have demonstrated significant health advantages for customers in 

recent years.8 Meanwhile, according to Mali et al. (2022), nutraceutical is a food or a part of 

food that has a long historical background in the treatment of various diseases. Nutraceuticals 

play a significant role in maintaining normal physiological functions and overall human 

health. They encompass a wide range of products, including dietary supplements, herbal 

products, genetically engineered “designer” foods, and isolated nutrients. One category of 

nutraceuticals, known as traditional nutraceuticals, is derived directly from nature and 

includes nutrients, herbs, and phytochemicals9 and habitually used in certain group, 

communities or cultures. 

The efficacy of traditional nutraceuticals and functional food in the treatment of T2DM and 

its complications has been demonstrated in multiple previous studies.7,10,11 In addition, 

Blahova et al6 and Venkatakrishnan et al7 concluded that a combination therapy of 

conventional hypoglycemic drugs, lifestyle modification, and functional food or traditional 
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nutraceuticals could significantly control glucose level and reduce complications related to 

diabetes. 

Asia possesses diverse ancient medicinal system originating from herbs and functional 

foods, including traditional Chinese medicine, Ayurvedic practices from India, and Jamu from 

Indonesia. In the past decade, there has been a surge in research on traditional nutraceuticals 

components and functional foods exhibiting antidiabetic properties.11–13 These herbal 

remedies and functional foods contain bioactive compounds, including flavonoid and non-

flavonoid polyphenols, that are demonstrated to reduce blood sugar levels.6 These bioactive 

compounds exhibit multiple antidiabetic mechanisms, including antioxidant activity and the 

regulation of various processes: enhancement of glucose reabsorption, glucagon-like peptide-

1 homeostasis, beta cell function, and insulin resistance.14 

Several extensive reviews exist on traditional nutraceuticals and functional foods with 

antidiabetic properties, elucidating the molecular pathways involved in the prevention and 

treatment of diabetes.6,7,14 Nonetheless, these studies exclusively address the antidiabetic 

properties of individual plants or food.  This review aims to explore traditional nutraceuticals 

with antidiabetic properties derived from various plants and foods, with a particular emphasis 

on Asian traditional medicine. This review will focus on their mechanisms for improving 

hyperglycemia, highlighting their antioxidant effects on gene expression involved in the 

pathophysiology of T2DM.  

 

MATERIALS AND METHODS 

Literature searching was conducted in Pubmed, Scopus, and Science Direct using the 

keywords “nutraceutical”, “antidiabetic”, "insulin resistance", "Diabetes Mellitus", "herbal 

medicine", “mechanism”, “pathway”, "traditional food", "functional food", “antioxidant”, 

“clinical”, “preclinical”, "animal studies", and “Asian” combined with Boolean operators 

“OR”. Articles from 1973–2024 were included in this review. The inclusion criteria for 

articles in this review are in vitro studies, animal studies, and clinical trials that investigated 

the effect of nutraceuticals, herbal, and traditional medicine from Asian countries as 

antidiabetes and its mechanistic pathway. The exclusion criteria is systematic reviews and 

meta-analyses articles. We also discovered some relevant literature by manually searching the 

references to the included articles and using Google Scholar. Ethics approval is not required 

for this type of study. 
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RESULTS AND DISCUSSION 

Development of type 2 diabetes mellitus 

T2DM is a metabolic disorder with hyperglycemia as its main characteristic. However, T2DM 

not only impairs carbohydrate metabolism but also impairs lipid and protein metabolisms due 

to decreased insulin secretion, insulin resistance, or both.15 T2DM is a complex condition 

influenced by hereditary and environmental factors. Risk factors for developing diabetes 

mellitus include advanced age, non-White ancestry, family history of diabetes, genetic 

factors, overweight or obesity, polycystic ovarian syndrome, history of atherosclerotic heart 

disease, unhealthy eating habits (such as red meat, sugary drinks, low intake of whole grains 

and fiber), smoking, sedentary lifestyle, history of macrosomia or gestational diabetes, skin 

hyperpigmentation (acanthosis nigricans), short or excessively long sleep duration, shift work, 

and economic and psychosocial factors.15 

Unhealthy food plays an important risk factor for T2DM. Several pathways could be 

influenced by particular food consumption and nutrient intakes.  Refined grains and sugar 

sweetened beverages contain simple carbohydrates that directly induce postprandial plasma 

glucose and insulin secretion. Simple carbohydrates are rapidly absorbed, thus rapidly 

increase postprandial plasma glucose.  Prolonged intake of high simple carbohydrate could 

increase insulin resistance.16,17   

 

Insulin resistance 

Insulin resistance is characterized by a diminished biological response to insulin in target 

tissues, primarily affects the liver, muscle, and adipose tissue. Insulin resistance hinders 

glucose metabolism, leading to an adaptive rise in beta-cell insulin secretion and 

hyperinsulinemia.18 In obesity, insulin resistance in the adipose tissue increases lipolysis and 

free fatty acids (FFA) level in plasma. The rise of plasma FFA stimulates gluconeogenesis, 

worsens insulin resistance in muscle and the liver, and plays a role in β‑cell failure, impairing 

insulin secretion. These abnormalities caused by increased plasma FFA are called 

lipotoxicity.17,18  

In obese T2DM patients, increased levels of pro‑inflammatory cytokines, such as IL‑6 and 

TNF-α, and increased numbers of macrophages and other inflammatory cells are observed in 

adipose tissue, liver, and serum. Inflammation appears mainly in adipose tissue and the liver. 

Infiltration of macrophages in adipose tissue promotes lipolysis and an increase level of IL‑6 

can trigger hepatic gluconeogenesis and generate hepatic insulin resistance.15  
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Initially, insulin resistance occurs but can be compensated by elevated insulin production. 

As the condition advances, the pancreatic beta cells lose their capacity to sustain elevated 

insulin production, resulting in reduced glucose tolerance and manifest diabetes. Factors 

contributing to beta-cell failure comprise glucotoxicity, lipotoxicity, inflammation, and 

abnormalities in genetics. 

The core defects in T2DM are insulin resistance in muscle and the liver and decreased 

insulin secretion by the pancreatic β‑cells.15 Insulin resistance in muscle results in reduced 

glucose uptake, whereas in the liver increased hepatic glucose production (gluconeogenesis).5 

 

β-cell dysfunction 

In normal condition, insulin secretion by β-cell is governed tightly by coupling between 

glucose metabolites from the tricarboxylic acid (TCA) cycle and nucleotides. Glucose enters 

the β-cell via glucose transporter 2 (Glut2) by exploiting a concentration gradient.19 During 

glycolysis, glucose undergoes phosphorylation that creates pyruvate, which is then 

transported into the mitochondria, resulting in Adenosine Triphosphate (ATP) generation. 

This process also produces reactive oxygen species (ROS) as by-products. Increased ATP 

elevates the ATP/Adenosine Diphosphate (ADP) ratio causing the cellular KATP-channels to 

close, subsequently depolarizes cell membrane and opens the Ca2+ channels.20 The increase of 

Ca2+ levels in the cytosol triggers insulin exocytosis.21 

During hyperglycemic states, pyruvate excess enters the TCA cycle elevates 

NADH/FADH2 entry into the mitochondrial electron transport chain, hence augmenting ROS 

formation.22 In hyperlipidemia, increased free fatty acid (FFA) levels result in the oxidation of 

both FFA and acetyl coenzyme A (CoA) within the TCA cycle. This enhances donation of 

nicotinamide adenine dinucleotide/flavin adenine dinucleotide (NADH/FADH2) to the 

electron transport chain, leading to excessive ROS generation and oxidative stress.23 Elevated 

amounts of ROS can induce mitochondrial injury by triggering the mitochondrial 

permeability transition pore to open and subsequent depolarization. Consequently, 

endogenous antioxidants escape from mitochondria, resulting in mitochondrial depletion and 

death.24 Mitochondrial injury diminishes the ATP/ADP ratio, obstructing membrane 

depolarization and the activation of Ca2+ channels. This results in hindered and inadequate 

insulin secretion.25 
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Other systems/organs involved in the mechanism of hyperglycemia 

According to De Fronzo et al.15, there were eight organs known as the ‘ominous octet’ 

involved in the pathogenesis of hyperglycemia in T2DM. They were pancreas β-cells and α-

cells, muscle, liver, adipose tissue, gastrointestinal (stomach, intestine, and colon), kidney, 

and brain.  In addition, three pathophysiological abnormalities contributing to muscle insulin 

resistance, i.e., activation of inflammatory pathways and immune system, as well as impaired 

insulin-mediated vasodilation, also have a role in hyperglycemia, making the ‘decadent 

decoplet’ (Figure 1). 

Normally, incretin effects performed by glucagon-like polypeptide-1 (GLP-1) and glucose-

dependent insulinotropic polypeptide (GIP) increase insulin secretion when glucose is 

administered orally compared to intravenously. Meanwhile, GLP-1 deficiency and GIP 

resistance is found in T2DM, which reduce incretin effects in the gastrointestinal tract, 

consequently, increase hyperglycemia.5 

In early diabetes with few complications, accelerated gastric emptying is more common. 

Gastric emptying is a major factor that influences postprandial blood glucose and vice versa. 

Accelerated gastric emptying will increase the rate of nutrient delivery to small intestine 

which will increase the glucose absorption in the intestine and stimulates the release of GLP-1 

and GIP. Increased glucose absorption will increase the level of postprandial blood glucose. 

Both the acute hyperglycemia and GLP-1 will slow gastric emptying. Meanwhile, GLP-1 and 

GIP will stimulate the secretion of insulin from pancreas, that will lower the blood glucose. 

However, in the chronic and complicated diabetes, gastroparesis (delayed gastric emptying) is 

more common.26 In addition, dysbiosis of the gut microbiota also contributes to the 

development of T2DM through production of abnormal metabolites, including short chain 

fatty acids, lipopolysaccharides, trimethylamine, and metabolites of aromatic amino acids.27 

The function of pancreas α-cells is to produce glucagon. During the fasting state, its level 

in plasma will increase. This increase, together with augmented hepatic sensitivity to 

glucagon, will enhance hepatic glucose production.5,15  

Kidney also has a role in T2DM pathogenesis. The maintenance of hyperglycemia is in 

part due to increased renal glucose reabsorption by the sodium/glucose co‑transporter 2 

(SGLT2) and the increased threshold for glucose spillage in the urine.15 The kidney filters 163 

g of glucose in a day, of which 90% are reabsorbed by SGLT2 in the convoluted proximal 

tubule. The rest 10% will be reabsorbed by SGLT1 in the ascending and descending tubules; 

thus, no glucose will be found in urine. In T2DM patients, SGLT2 gene expression is 

increased.5 
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The brain is involved in controlling the appetite that can contribute to weight gain and loss. 

Unfortunately, insulin resistance also happens in the brain impairing the appetite-suppressive 

effects of insulin. In addition, leptin resistance, GLP1, amylin, and peptide YY, together with 

low brain dopamine and increased brain serotonin levels, contribute to weight gain. All of this 

exacerbates the underlying resistance.15 

Vascular insulin resistance reduces microvascular recruitment, in which only one of three 

capillaries are open at rest.15 In normal conditions, vasodilation results from insulin metabolic 

signaling via increased endothelial cell nitric oxide (NO) production, thus increasing 

bioavailable NO. Conversely, insulin resistance promotes vasoconstriction and vascular 

proliferation by activating the mitogen-activated protein kinase (MAPK) cascade. This 

cascade coordinates vasoconstriction induced by insulin resistance and growth-promoting 

effects.28 

The modulation of gene expression involved in the gluconeogenesis pathway plays a 

pivotal role in the regulation of glucose homeostasis within the body. The mechanism of 

gluconeogenesis involving the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-

phosphatase (G6Pase) genes is crucial in the regulation of glucose production in the liver. 

PEPCK is a key enzyme in the gluconeogenesis pathway that catalyzes the conversion of 

oxaloacetate to phosphoenolpyruvate (PEP). PEPCK gene expression is regulated by various 

transcription factors influenced by hormones, such as glucagon and cortisol, which increase 

PEPCK expression in the fasting state to increase glucose production. G6Pase is an enzyme 

that catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose, which is the final step 

in gluconeogenesis. G6Pase gene expression is also regulated by hormones and metabolic 

conditions. When glucose levels are low, hormones such as glucagon will increase the 

expression of G6Pase to favor the release of glucose into the circulation. The expression of 

these two genes (PEPCK and G6Pase) is regulated by hormonal signals that reflect the 

nutritional status of the body. In the fasting state, hormones such as glucagon and cortisol will 

increase the expression of these genes, while insulin will decrease their expression to reduce 

glucose production. Although the liver is the main source of glucose production, studies show 

that when gluconeogenesis in the liver is impaired, extra-hepatic tissues such as the kidneys 

and intestines can compensate by increasing their gluconeogenic enzyme activity.29 

 

Role of oxidative stress in T2DM development and complications 

ROS are primary contributors to oxidative stress, and their generation is an inevitable result of 

metabolic processes. The main source of ROS production is the leakage of electrons from the 
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mitochondrial respiration process, which then converts to molecular oxygen, leading to the 

synthesis of superoxide anion (O2-).30 The activation of the NADPH oxidase enzyme could 

also generate O2-.31 Elevated auto-oxidation and nonenzymatic glycosylation are additional 

potential pathways that may initiate the generation of free radicals and radical-induced lipid 

peroxidation. The elevated generation of ROS disrupts the equilibrium between oxidant and 

antioxidant levels, leading to a pro-oxidative condition.32 

Oxidative stress is also involved in the pathogenesis and development of T2DM. Genetic 

predispositions and other environmental factors including overnutrition, high energy intake, 

high fat and carbohydrate consumption, and physical inactivity may contribute to obesity and 

metabolic syndrome. This condition increases oxidative stress due to high levels of ROS. 

Oxidative stress together with increase in FFA and cytokines produced by adipose tissue will 

induce insulin resistance.33 

Hyperglycemia induces ROS overproduction through the activation of the polyol pathway, 

augmented production of advanced glycation end products (AGEs), stimulation of the 

diacylglycerol-protein kinase C (DAG-PKC) pathway, and excessive activation of the 

hexosamine pathway. These mechanisms interact to facilitate mitochondrial failure, 

inflammation, and disruption of insulin signaling, leading to insulin resistance and pancreatic 

β-cell malfunction, which are characteristic of T2DM.32,34   Pancreatic beta cells generate 

elevated levels of ROS and have decreased synthesis of antioxidative enzymes. Consequently, 

these cells possess a diminished endogenous antioxidant capability, rendering them 

particularly vulnerable to oxidative stress.35 They only have approximately 50% of the 

superoxide dismutase (SOD) and 5% of the hydrogen peroxide-scavenging enzymes, i.e. 

glutathione peroxidase (GPx) and catalase (CAT), relative to the quantities present in the 

liver.35–37 

Oxidative stress is a major factor of glucose toxicity in DM as it leads to decreased levels 

of two insulin gene transcription factors, Pancreatic and Duodenal Homeobox 1 (PDX-1) and 

MafA. PDX-1 and MafA normally bind to the insulin promoter and stimulate insulin gene 

transcription. Decreased levels of these two proteins lead to decreased insulin promoter 

activity, insulin gene expression and insulin secretion.38 Clinical observations of the 

relationship between glucose toxicity and oxidative stress are associated with decreased levels 

of two insulin promoter transcription factors namely, PDX-1 and RIPE-3b1 activator/MafA.39 

Hyperglycemic risk in mice is increased due to disruption of PDX-1, MafA binding to DNA, 

decreased insulin mRNA, decreased glucose-induced insulin secretion in islets of Langerhans 

in the pancreas.40 
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Among various transcription factors, PDX-1 plays an important role in pancreatic 

development and pancreatic beta cell differentiation and serves as a transcriptional activator 

of the insulin gene. Neurogenin-3 (Ngn3) and NeuroD are also important transcription factors 

for pancreatic endocrine cell differentiation. MafA expression is at a late stage of pancreatic 

beta cell differentiation and functions as a potential insulin gene activator of transcription.41 

Pancreatic transcription factors have the potential to induce various beta cell-related genes 

including insulin.41 

 MafA is β-cell specific and also functions as an insulin gene activator. Expression of 

pancreatic transcription factors in non-beta cells of the pancreas, liver, intestine, and bone 

marrow cells induces gene expression of various beta cells including insulin. Baumel-

Alterzon S et al42 reported that nuclear factor erythroid 2-related factor (Nrf2) controls redox 

balance and affects PDX-1 levels, where pharmacological activation of the Nrf2 pathway can 

alleviate diabetes by maintaining PDX-1 levels. 

Oxidative stress also contributes to the development of T2DM complications. Increased 

ROS could immediately impair DNA, proteins, and lipids, modifying their function as well as 

their structure, leading to cellular malfunction and impairment of normal biological functions. 

Oxidative damage also stimulates inflammation which contributes to the onset of 

microvascular problems such as diabetes nephropathy, retinopathy, and neuropathy, and it 

also causes macrovascular complications such as cardiovascular disease.34,43  

Given the significant impact of oxidative stress in the development and complications of 

T2DM, efforts for limiting oxidative stress in diabetes should include antioxidant therapy, in 

addition to lifestyle changes and efficient hyperglycemic management. Yet, more study is 

required to completely figure out the fundamental mechanisms of oxidative stress in diabetes. 

Additionally, studies to assess the effectiveness of antioxidant therapies, including natural 

antioxidants derived from traditional nutraceuticals, in managing diabetes and preventing its 

complications are also essential. By focusing on oxidative stress, it is expected to reduce 

diabetes problems and enhance the health of patients.43 

 

Traditional nutraceuticals from Asia with potential antidiabetic effects 

Traditional nutraceuticals from Indonesia  

Traditional nutraceuticals from Indonesia have gained attention for their potential health 

effects, especially those passed down through generations, such as galohgor, bir pletok, 

wedang uwuh, and loloh Bali. These herbal concoctions, rich in natural bioactive compounds, 

are deeply rooted in Indonesian culture and have been used for centuries to promote health 
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and wellness. The diverse blend of spices, herbs, and medicinal plants in these traditional 

drinks contributes to their ability to help regulate blood glucose levels, improve insulin 

sensitivity, and combat oxidative stress. This makes them promising alternatives or 

complementary options for managing diabetes in a natural way.  

Galohgor 

Galohgor Nutraceutical is one of the Indonesian traditional herbal medicines (Jamu) 

originating from the Sundanese ethnicity of West Java. The composition of Galohgor 

Nutraceutical found in Sukajadi Village, Tamansari District, Bogor Regency, consists of 56 

types of medicinal plants in the form of leaves, nuts, herbs, and spices. Based on literature 

studies, kaempferol was identified in 75% of the plant species used in the formulation of 

Galohgor nutraceuticals, contributing to 95.4% of the total weight of the 56 plants analyzed. 

Notably, several of these plants have demonstrated potential antidiabetic properties, including 

Psidium guajava,44 Zingiber aromaticum Veleton,45 Kaempferia galanga L.,46 Melastoma 

malabathricum,47 Sonchus arvensis L.,48 Myristica fragrans,49 Zingiber officinale,50 Persea 

americana,51 Piper betle,52 Pluchea indica, Zea mays L.,53 Phaseolus radiatus L.,53 and 

Amomum cardamomum L.45 (Table 1).  Galohgor Nutraceutical is consumed by the 

Sundanese people in powder form as a snack. Galohgor Nutraceutical has a content of fat, 

protein, carbohydrates, zinc, magnesium, vitamin C, carotenoids (β-carotene), vitamin E, and 

phenolic compounds. Based on pre-clinical and clinical studies, Galohgor nutraceutical as an 

antidiabetic has been proven to reduce hyperglycemia, oxidative stress, adipose tissue, and 

body weight in type 2 diabetes.54,55  

 

Bir pletok 

The traditional Indonesian herbal drink known as Bir Pletok, originating from the Betawi 

tribe, is renowned for its therapeutic properties. Historically used for its warming and health-

promoting properties, Bir Pletok is made from a blend of spices including ginger (Zingiber 

officinale), lemongrass (Cymbopogon citratus), pandan leaves (Pandanus amaryllifolius) and 

cinnamon (Cinnamomum verum). Gingerols, flavonoids and polyphenols are among the 

bioactive compounds in Bir Pletok, known for their ability to regulate glucose metabolism 

and provide antioxidant protection. Due to its abundance of bioactive chemicals with 

antidiabetic properties, there has recently been increased interest in its potential use as a 

nutraceutical for the management of diabetes. With its blend of conventional herbal 

components, Bir Pletok may have encouraging antidiabetic benefits. Numerous studies have 
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confirmed the ability of Bir Pletok's main constituents to control blood sugar levels, improve 

insulin sensitivity and reduce inflammation.56 

 

Wedang uwuh 

Indonesia's traditional herbal drink from Yogyakarta, Wedang Uwuh, is well known for its 

abundance of natural spices and herbs and for its health advantages. Literally translating to 

"herbal trash drink," "Wedang Uwuh" refers to the vibrant concoction of ingredients that 

include nutmeg (Myristica fragrans), ginger (Zingiber officinale), cinnamon (Cinnamomum 

verum), cloves (Syzygium aromaticum), Sappan wood (Caesalpinia sappan), and lemongrass 

(Cymbopogon citratus). For centuries, people have drunk this beverage because of its 

warming properties and potential health benefits. Wedang Uwuh has garnered interest lately 

due to its potential as a conventional nutraceutical, especially in the treatment of long-term 

conditions like diabetes. Consequently, there is a growing interest in supplementary 

approaches to diabetes management, such as Wedang Uwuh, which are natural remedies. 

Bioactive substances like polyphenols, flavonoids, and essential oils found in the herbs and 

spices of Wedang Uwuh have been demonstrated to boost insulin sensitivity, lessen oxidative 

stress, and improve glucose metabolism.57 

 

Loloh Bali 

The herbal liquids known as Loloh are made and drunk only in Bali, Indonesia, and are used 

to treat and prevent a variety of illnesses. There are 51 plant species in all, from 32 families, 

that have been identified in the different Loloh preparations. Loloh is made from a variety of 

plants and plant components that are used to treat various ailments. The most common ways 

to prepare these plants are as decoctions, juices, or just as ingredients. Alstonia scholaris (L.) 

R. Br., Blumea balsamifera (L.) DC., Cinnamomum burmanni Nees ex Bl., and Piper betle L. 

are the plants that are most frequently mentioned (>30 informants). The pharmacological 

effects of these well-researched plants, such as their antibacterial, anticancer, and antidiabetic 

properties, have been reported.58 

 

Traditional Chinese Medicine  

For thousands of years, traditional Chinese medicine (TCM) has been used to treat a wide 

range of illnesses, including metabolic diseases like diabetes. Traditional nutraceuticals, 

which are natural products made from medicinal plants and herbs, have drawn a lot of 

attention due to their potential therapeutic benefits among their various therapies. In addition 
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to offering vital nutrients, these nutraceuticals also include bioactive substances that have 

positive effects on health, especially when it comes to managing chronic conditions like 

diabetes. The utilization of medicinal characteristics of herbs that have been demonstrated to 

control blood glucose levels, enhance insulin sensitivity, and lowering oxidative stress is how 

traditional Chinese nutraceuticals provide an alternative method. Preclinical and clinical 

research has shown encouraging antidiabetic effects for some TCM-based nutraceuticals. 

Herbs such as Momordica charantia, Berberis aristata, and Panax ginseng contain 

compounds that have been demonstrated to possess the ability to control glucose metabolism, 

boost pancreatic function, and reduce inflammation. Research on the discovery and 

characterization of these bioactive components from conventional nutraceuticals is still 

ongoing, intending to create safer and more efficient diabetes treatment therapies.59 

 

Traditional nutraceuticals from Malaysia  

Malaysia, a country renowned for its varied natural vegetation and rich cultural legacy, has 

long used traditional treatments for a range of illnesses, including diabetes. Traditional 

nutraceuticals, or goods made from natural sources like herbs and plants and offering both 

nutritional and therapeutic benefits, have become popular due to the nation's wide variety of 

medicinal plants. These age-old cures, which are frequently handed down through the 

generations, have drawn interest because of their possible application in the treatment of 

diabetes, an increasingly widespread health issue. Bioactive compounds found in traditional 

Malaysian nutraceuticals Gynura procumbens (Sabung Nyawa), and Curcuma longa 

(Turmeric) have been shown to potentially improve insulin sensitivity, lower blood sugar 

levels, and reducing the complications associated with diabetes. These therapeutic plants are 

currently being researched for their unique antidiabetic properties. Historically, they have 

been utilized to treat a wide range of illnesses.60,61  

 

Thai traditional medicine  

Herbal medicine in Thailand has become popular in recent years through the Thai Traditional 

Medicine (TTM) revitalization program.62 The Thai government has made various efforts to 

accelerate research on plants in Thailand that have nutraceutical content for various diseases, 

including diabetes mellitus. This is based on the habits of local rural communities in Thailand 

who use many herbal plants for diabetes mellitus. The nutraceutical contents of these herbal 

plants have been proven to exhibit a positive impact on the management of diabetes 

mellitus.76 Research conducted from the in vitro stage to clinical trials on healthy subjects and 
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patients with diabetes mellitus conditions has been proven to reduce HbA1C, blood glucose 

levels, postprandial glucose levels, body weight, fat mass, insulin, lipids levels, oxidative 

stress, arterial stiffness, and endothelial dysfunction. Besides, TTM also improves insulin 

response, antioxidants, and β-cells function. Various TTMs are used ranging from aerial 

parts,63 leaves,64–74 fruits,75–77 styles,78 bark, leaf,79 whole plant,80–82 stems,98 and rhizomes.83–

85 

Different parts of the same plant often have similar phytochemical profiles, thus exhibiting 

identical pharmacological properties.86 Current research continues to expand on the use of 

nutraceuticals in TTM for drug therapy,63 but the use in the form of food therapy also remains 

an option. For example, Thai Papaya Cultivar Leaves is a vegetable commonly consumed by 

Thai people. Research has shown that three types of Thai Papaya Cultivar Leaves have 

antidiabetic activity.87 Clinical trials on various commonly consumed food plants can increase 

consumption alternatives for the community to maintain health and management of non-

communicable diseases including diabetes mellitus.  

Various studies have proven that TTM can have a positive impact on DM conditions, 

including decreasing HbA1c, reducing blood glucose levels, increasing insulin response, and 

reducing oxidative damage in the brains of diabetic mice. These plants include Andrographis 

paniculata (Burm.f.) Nees, Pluchea indica (L.) Less, Apium graveolens L., Aloe vera (L.) 

Burm.f., Ipomoea aquatica Forssk., Lagerstroemia speciosa (L.) Pers. (bungur leaf), 

Terminalia bellirica (Gaertn.) Roxb., Terminalia chebula Retz., Momordica charantia L., Zea 

mays L., Morinda citrifolia L., Eclipta prostrata (L.),  Phyllanthus amarus, Curcuma longa 

L., Gymnema inodorum (Lour.) Decne., Aegle marmelos (L.), Glycine max (L.) Merr, Salacia 

chinensis L., Artocarpus heterophyllus Lam., and Phyllanthus emblica L., Salacia chinensis L. 

(Table 1). 

 

India herbal plants 

The prevalence of diabetes mellitus in India is reported to be high,88 which is attributed to 

excess fat, low muscle mass and genetic factors of racial predisposition that increase the risk 

of T2DM in India.89 Treatment of T2DM using herbs is growing in developing countries 

including India. World Health Organization (WHO) data states that 90% of people in 

developing countries use plants as traditional medicine for health.90 India has 2500 species of 

herbal plants out of 21,000 plants worldwide registered by WHO.91 The nutraceutical contents 

in various plants were studied and showed a positive impact on diabetes mellitus conditions, 



16 

such as Ficus religiosa, Pterocarpus marsupium, Gymnema sylvestre, Allium sativum, 

Eugenia jambolana, Momordica charantia, and Trigonella foenum-graecum (Table 1).92 

Various plants in India contain polyphenols, flavonoids, fatty acids, and fiber.92–95 Ficus 

religiosa, which can be used for its flowers and stem bark, is known to have antidiabetic96 and 

antihyperglycemic97 effect which can reduce blood glucose levels and modulate antioxidant 

enzymes to fight oxidative stress. Consumption of Eugenia jambolana can affect antioxidant 

defenses, decrease glucose, increase insulin secretion, inhibit insulin degradation, and have 

hypoglycemic effects.98 The parts of this plant that are commonly utilized are seeds, skin, 

fruit, and leaves. Momordica charantia is known to contain vicine, charantin, and 

triterpenoids along with several antioxidants, saponins99 that have a positive impact on 

diabetic conditions.100 Research at the clinical stage can continue to be developed to prove the 

potential of various nutraceuticals in Indian plants. Isolation, purification, and 

characterization of bioactive compounds contained therein can be used as a basis for the 

development of functional food products that are potential for the prevention and management 

of diabetes. 

Nutraceutical compounds in traditional plants from Asia and their potential effect on 

diabetes mellitus are shown in Table 1. Some results from studies on the antidiabetic effects 

of Asian traditional nutraceutical metabolites include: 1) Curcuma longa65 contains curcumin, 

curcumol, and bisdemethoxycurcumin, which help lower blood glucose and postprandial 

glucose levels while improving β-cell function; 2) Zea mays61 which is rich in volatile oils, 

steroids, saponins, polysaccharides, alkaloids, flavonoids, organic acids, and phenolic 

compounds, has been shown to reduce blood glucose levels; 3) Glycine max101 contains 

isoflavones and anthocyanins, which are effective in lowering postprandial glucose levels; 4) 

Andrographis contains terpenoid glycosides, alkaloids, flavonoids, saponins, and tannins, 

which help reduce HbA1c levels; 4) Allium102,103 contains allicin, allixin, ajoene, and other 

organosulfur compounds that reduce fasting blood sugar levels, enhance insulin secretion by 

β-cells, and boost antioxidant defenses of the body; 5) Phyllanthus60 family contains phenolic 

compounds (e.g., tannins, phenolic acids, flavonoids), alkaloids, phytosterols, terpenoids, 

organic acids, amino acids, and vitamins, which reduce oxidative stress. 

Other beneficial effects of traditional nutraceuticals in diabetes include reducing lipid 

levels and enhancing antioxidant activity, as seen in plants from the Terminalia family.57 

Additionally, some plants improve insulin sensitivity and stimulate glucose uptake in 

peripheral tissues,104 such as Trigonella foenum-graecum, which contains saponins, 4-

hydroxyisoleucine, trigonelline, alkaloids, and steroids.66 These studies demonstrate that 
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traditional nutraceutical metabolites from Asia hold promise as alternative non-

pharmacological therapies for managing diabetes. 

 

Modulation of gene expression by traditional nutraceuticals  

There is a wide possibility available in regard to nutraceuticals-related gene expression in 

diabetic treatment. However, this review will focus on three main mechanisms of gene 

expression modulation based on the primary pathophysiology of type 2 diabetes mellitus, i.e., 

impaired insulin secretion from beta cells (β-cell dysfunction), disrupted insulin signaling 

mechanisms, and abnormalities induced by oxidative stress exacerbating the diabetic 

condition. 

Modulation of Gene Expression Involved in β-Cell Dysfunction  

Traditional nutraceuticals, derived from natural plants, herbs, and bioactive compounds, have 

emerged as promising agents in modulating gene expressions involved in β-cell dysfunction 

(Table 2). Compounds such as curcumin, resveratrol, kaempferol, and quercetin have shown 

the ability to regulate pathways linked to oxidative stress, inflammation, and apoptosis. For 

instance, curcumin has been reported to upregulate the Nrf2 pathway, which protect β-cells 

from oxidative damage.105,106 Similarly, resveratrol upregulate the sirtuin 1 (SIRT1) pathway, 

promoting β-cell survival and improving insulin secretion under stress conditions.107,108 

Resveratrol’s inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) operates to downregulate the pancreatic β-cell apoptotic pathway resulting in improved β-

cell survival.109 

In pancreatic β-cells, kaempferol has been found to enhance glucose-stimulated insulin 

secretion (GSIS) by activating the mitochondrial calcium uniporter (MCU) and increasing 

mitochondrial calcium uptake.110 This effect was validated in both insulinoma cell line (INS-

1E) cells and human islets, suggesting that kaempferol can improve β-cell function under 

stress conditions. Interestingly, while kaempferol upregulate the SIRT1 pathway, other 

studies have identified alternative mechanisms for improving β-cell function and survival.111 

Anthocyanins, a subclass of flavonoids with potent antioxidant and anti-inflammatory 

properties, have been shown to upregulate nitric oxide (NO) bioactivity and Nrf2. This 

activation strengthens endogenous antioxidant defense mechanisms and mitigates oxidative 

stress, which is a key contributor to pancreatic β-cell dysfunction in diabetes. The increased 

Nrf2 activity leads to enhanced production of endogenous antioxidants, providing protection 

against oxidative damage. Concurrently, anthocyanins are proposed to downregulate NF-κB, 

a key regulator of inflammation. This suppression results in the downregulation of pro-
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inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, 

IL-6, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion protein 1 

(VCAM-1), ultimately reducing chronic low-grade inflammation—a hallmark of insulin 

resistance and diabetes progression. Additionally, since NF-κB negatively regulates 

transforming growth factor-beta (TGF-β), its inhibition by anthocyanins indirectly upregulates 

TGF-β expression, contributing to improved cellular homeostasis and immune regulation. 

Through these mechanisms, anthocyanins play a crucial role in preserving pancreatic β-cell 

function, enhancing insulin sensitivity, and mitigating diabetes-related complications by 

reducing oxidative stress and inflammation.112  

Alkaloids, a diverse group of naturally occurring bioactive compounds, have been shown 

to modulate key signaling pathways involved in glucose metabolism and oxidative stress 

regulation. These compounds upregulate the expression of liver kinase B1 (LKB1), 

Adenosine Monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-

AMPK), and phosphorylated transducer of regulated cyclic adenosine monophosphate 

responsive element-binding protein-2/CREB 2 (p-TORC2), which play critical roles in 

maintaining cellular energy balance and metabolic homeostasis.113 Gallic acid, a polyphenolic 

compound with strong antioxidant and anti-inflammatory properties, has been found to 

enhance insulin sensitivity and β-cell function through multiple molecular mechanisms. It 

regulates the expression of tumor necrosis factor-alpha (TNF-α) and adipocytokines, reducing 

inflammation associated with insulin resistance. Gallic acid also exerts a β-cell protective 

effect by inhibiting caspase-9-mediated apoptosis, which is essential for maintaining 

pancreatic function and preventing β-cell loss in diabetes.114 

The therapeutic potential of these nutraceuticals lies in their ability to target multiple 

signaling pathways that influence β-cell health. By modulating genes involved in stress 

response, apoptosis, and insulin biosynthesis, traditional nutraceuticals offer a complementary 

approach to conventional diabetes treatments. Future research should focus on clinical studies 

to validate their efficacy and investigate the optimal doses and formulations for protecting and 

restoring β-cell function in diabetes.115,116 

 

Modulation of gene expression involved in insulin signaling pathway  

Insulin gene expression is influenced by nutraceuticals including flavonoids (Table 2). 

Flavonoids are now considered as indispensable components in various nutraceutical, 

pharmaceutical, medicinal and cosmetic applications. This is due to their anti-oxidative, anti-
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inflammatory, anti-mutagenic and anti-carcinogenic properties and their capacity to modulate 

enzyme function.117  

Nutraceutical plants have shown significant potential in modulating gene expression in 

insulin signaling pathways, providing an alternative approach to diabetes management. Some 

of the herbs that have been extensively studied include turmeric (Curcuma longa), cinnamon 

(Cinnamomum verum), bitter melon (Momordica charantia), and guava leaf.118 

 Turmeric, with its main active compound curcumin, has been shown to improve insulin 

sensitivity by modulating the expression of genes involved in glucose and lipid 

metabolism.119 Studies show that cinnamon extract can upregulate the expression of genes 

related to insulin signaling pathways, including phosphoinositide 3-kinase (PI3K) and  protein 

kinase B  (AKT), which play an important role in glucose uptake by cells. In addition, 

cinnamon has also been shown to reduce insulin resistance by upregulating the expression of 

the PPAR-γ gene, which is involved in lipid metabolism and insulin sensitivity.104  

Guava leaf extract (GLE), which contains the bioactive compound kaempferol, has the 

potential to improve insulin signaling under diabetic conditions by modulating insulin 

receptor substrate 1 (IRS-1) gene expression. In diabetic rats, GLE enhances glucose uptake 

in cells by upregulating IRS-1 gene expression in skeletal muscle, thereby activating insulin 

receptors. Activated IRS-1 stimulates the enzyme PI3K, which subsequently converts 

phosphatidylinositol 4,5-bisphosphate (PIP2) in the cell membrane into phosphatidylinositol 

3,4,5-trisphosphate (PIP3). PIP3 acts as a signaling molecule that binds to and activates AKT, 

also known as PKB. Activated AKT phosphorylates several downstream targets, including 

proteins that regulate vesicles containing glucose transporter-4 (GLUT4). Phosphorylation by 

AKT induces upregulation of gene expression of GLUT4 (Solute carrier family 2, member 4  

(SLC2A4)), causing the vesicles containing GLUT4 to translocate to the plasma cell 

membrane. GLUT4 is a glucose transporter found in intracellular vesicles, and once 

translocated to the cell membrane, it facilitates glucose entry into the cell muscle.102,120 Figure 

2 shows modulation of IRS and GLUT4 genes by bioactive compounds of traditional 

nutraceuticals, i.e. kaempferol, myricetin and terpenoids. 

Terpenoids, a diverse class of naturally occurring compounds derived from isoprene units, 

are widely found in medicinal plants. These bioactive compounds have been shown to 

upregulate the expression of key proteins involved in insulin signaling and glucose 

metabolism, including the insulin receptor (IR) and IRS-1, which play crucial roles in 

enhancing insulin sensitivity. Additionally, terpenoids upregulate the expression of glycogen 

synthase kinase 3β (GSK-3β) and Akt serine/threonine kinase (Akt), both of which regulate 
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glycogen synthesis and glucose uptake. Furthermore, terpenoids promote the transcription of 

glucose transporter type 4 (GLUT4) and AMPK, facilitating glucose uptake into cells and 

improving energy homeostasis. Through these molecular mechanisms, terpenoids contribute 

to enhanced insulin sensitivity, improved glucose utilization, and potential therapeutic 

benefits in metabolic disorders such as diabetes.121 Additionally, alkaloids have been reported 

to downregulate the expression of key gluconeogenic enzymes, thereby reducing hepatic 

glucose production.113 

Gallic acid concurrently activates peroxisome proliferator-activated receptor gamma 

(PPAR-γ) and CCAAT/enhancer-binding protein (C/EBP), which facilitate GLUT4 

translocation in adipose cells, thereby promoting glucose uptake. Additionally, gallic acid 

improves insulin sensitivity by modulating the Akt and AMPK signaling pathways, which are 

crucial for glucose homeostasis.114 

 

Modulation of antioxidant gene expression  

Superoxide dismutase (SOD) is a key antioxidant enzyme that catalyzes the conversion of 

superoxide radicals into hydrogen peroxide and oxygen, thereby reducing oxidative damage. 

Traditional nutraceuticals, such as turmeric (Curcuma longa), which contains curcumin—a 

natural polyphenol—have demonstrated significant effects on upregulated SOD gene 

expression (Table 2). For example, in a study investigating the effects of curcumin on high-fat 

diet and streptozotocin-induced hyperglycemia and hyperlipidemia in rats, curcumin 

treatment was found to upregulate SOD expression in the liver.103 Furthermore, curcumin 

significantly increased reduced glutathione (GSH) levels in diabetic rats, highlighting its 

ability to enhance antioxidant defenses.101 

Other traditional nutraceuticals, GLE which contain kaempferol as a primary secondary 

metabolite, have also shown promise in modulating antioxidant gene expression. In studies 

related to diabetes, kaempferol demonstrated the ability to increase the activity of glutathione 

peroxidase (GSH-Px) in vivo, indicating its potential to enhance the antioxidant defense 

system.122 Additionally, research has shown that kaempferol at a concentration of 50 µg/mL 

modestly upregulates the expression of superoxide dismutase 1 (SOD1) and SOD2 genes.123 

As a flavonoid, kaempferol exerts its antioxidant effects by enhancing cellular glutathione 

(GSH) levels, which is achieved by increasing the nuclear translocation of Nrf2, a key 

regulator of antioxidant response genes.124 Collectively, these findings indicate that 

nutraceuticals such as curcumin and kaempferol hold significant potential in mitigating 
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oxidative stress and improving antioxidant defenses through the modulation of key genes, 

including those encoding SOD and GSH-related enzymes. 

Myricetin, a flavonoid compound commonly found in Asia traditional nutraceutical, has 

been shown to protect pancreatic β-cells from apoptosis induced by high glucose (HG) 

conditions. This antioxidant protective effect is primarily mediated through the attenuation of 

endoplasmic reticulum (ER) stress, potentially via the inhibition of cyclin-dependent kinase 5 

(CDK5). Consequently, this pathway enhances the regulation of PDX1, a critical transcription 

factor for β-cell function and survival (Figure 3). 

Saponins, a class of bioactive glycosides with strong antioxidant and cytoprotective 

properties, have been shown to upregulate SOD1 gene expression, thereby enhancing the 

endogenous antioxidant defense system.125 Treatment with 200 μg/mL alfalfa-derived 

saponins significantly increases the enzymatic activities of SOD, GSH-Px, and CAT, which 

collectively mitigate oxidative stress and prevent cellular damage.126 Furthermore, saponins 

play a critical role in preserving pancreatic β-cell viability and promoting β-cell regeneration 

through the activation of the Wingless-related integration site (Wnt3a)/β-catenin/transcription 

factor 7-like 2 (TCF7L2) signalling pathway. This pathway is essential for maintaining β-cell 

function, enhancing proliferation, and regulating insulin secretion.127  

Alkaloids inhibit high glucose-induced nitro tyrosine accumulation, a marker of oxidative 

stress, while simultaneously downregulate SOD-1 and uncoupling protein 2 (UCP2) 

expression, which are linked to mitochondrial dysfunction. In INS-1E pancreatic β-cells, 

alkaloids prevent excessive AMPK phosphorylation, thereby protecting against cellular stress 

and dysfunction, highlighting their potential role in diabetes management.128 

 

Conclusion 

Various traditional nutraceuticals from Asia have potential antidiabetic effect. These 

nutraceuticals contain antioxidants and exert their effect on modulating gene expressions 

involved in β-cell dysfunction, insulin signaling pathway, and antioxidant activity. This 

review highlights the growing scientific interest in exploring traditional nutraceuticals for the 

prevention and management of diabetes mellitus, offering potential alternatives to 

conventional treatments. However, further clinical trials are needed to confirm these 

antidiabetic effects.  
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Figure 1. Organs involved in the pathogenesis of hyperglycemia in type 2 diabetes mellitus. The pathogenesis of hyperglycemia in 
TD2M begins with oxidative stress in cells caused by increased Reactive Oxygen Species (ROS). Eleven organs and cells were 
involved in the pathogenesis of hyperglycemia in TD2M, including neurotransmitter dysfunction in the brain, dysfunction in 
pancreas β-cells and α-cells, accelerated gastric emptying, increased glucose reabsorption in the kidney, glucose absorption in the 
intestine and abnormal microbiota in the colon, lipolysis in adiposity, and glucose production in the liver. Pathogenesis also involves 
insulin resistance, decreased glucose utilization in muscle cells and dysregulation of Antibody Cell. (This figure was generated using 
BioRender.com) 
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Figure 2. Modulation of IRS and GLUT4 genes by bioactive compounds of traditional nutraceuticals, i.e. kaempferol, myricetin and 
terpenoids. (This figure was generated using BioRender.com) 
 
 

 
 
Figure 3. Nutraceuticals Modulation of PDX-1 and MafA Gene Expression Involved in Alleviating β-Cell Dysfunction. (This figure 
was generated using BioRender.com) 
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Table 1. Types and nutraceutical content of Asian plants with potential to improve diabetes mellitus outcome 
 
Plant name Phytochemicals Potential effect on DM 
Ficus religiosa 
(Bodhi in Indonesia and Malaysia, Peepal in 
India, puti shu in China, Pho in Thailand) 
 

Tanin, saponin, senyawa polifenol, flavonoid, dan sterol 
leucocyandin 3-O-beta-d-galactosyl cel lobioside, leucopelargonidin-3-O-
alpha-L rhamnoside130,131 

-Antidiabetic96 
-Antihyperglicemic97 
-↓ blood glucose levels 
-increased insulin levels 
-modulates antioxidant enzymes to counteract oxidative 
stress 

Eugenia jambolana 
(Jamblang and Duwet in Indonesia, Jambulana 
in Malaysia, Jamun in India, Hei pu tao in 
China, Wa in Thailand) 
 

Seeds: alkaloid jambosine and glikosida jamboline.  
 
Fruits: Glukosa, fruktosa, rafinosa, malat acid, antosianin132 
 
Leaves: glikosida flavonol terasilasi, quercetin, myricetin, dan tanin133 

-antioxidant defense 
-hypoglicemic 
-↓ glucose 
-↑ insulin secretion inhibition of insulin degradation98 
-↓ blood cholesterol, triglycerides, and free fatty acids134 
-↓ 3-HMG Co-A reduktase enzyme activity135 
-↓ blood presure  
-hipoglikemik133 

Momordica charantia 
(Pare or Paria in Indonesia, Peria or Peria 
Katak in Malaysia, Karela in India, Kugua in 
China, Mara in Thailand) 
 

Seeds: vicine, charantin, dan triterpenoid beserta beberapa antioksidan, 
saponin99 

-antidiabetic and hypoglycemic136  
-reduction in waist circumference, improvement in 
diabetes, and symptoms of metabolic syndrome100 
-repair β-cells stimulate insulin levels137  
-↑ insulin sensitivity/signaling138  
-inhibits glucose uptake139 
-inhibits β-glucosidase activity140 
-inhibition of β-amylase and β-glucosidase  
-stimulates insulin secretion141 

Ocimum sanctum L 
(Ruku-ruku/kemangi hutan/ holy Basil in 
Indonesia, Selasih Hutan or Selasih India in 
Malaysia, Tulsi in India, Luole in China, 
Kaphrao in Thailand) 

Leaves: Eugenol, flavonoid, saponin, tanin, triterpenoid, asam rosmarinat, 
apigenin, isothymusin, isothymonin, cirsimaritin, orientin, dan vicenin, 
Antosianin142 
 
Seeds: fatty acid and sitosterol 

-↓ blood glucose143  
-↑ insulin secretion144  
-↓ glucose serum145  
-↑ antioxidant146 
-↓ glucose serum, cholesterol, trigliserid, dan LDL147 

Pterocarpus marsupium 
(Vijaysar in India) 
 

terpenoid and senyawa fenolik: ߚ-sitosterol, lupenol, glikosida aurone, 
epikatekin, and iso-flavonoid92 

-Antidiabertic activity148 
-hypoglikemik and sel-β regeneration149 
-improves HbA1C150 
-regulates glucose production through modulating AKT 
and AMPK in HepG2 cells151 

 
3-HMG Co-A: 3-Hydroxy-3-Methylglutaryl-Coenzyme A, LDL: Low-Density Lipoprotein, HbA1C: Hemoglobin A1c, AKT : serine/threonine kinase, AMPK: AMP-activated protein kinase, HepG2: 
Human Hepatocellular Carcinoma cell line 2, GLUT-4 : Glucose Trasporter 4, 3T3-L1: mouse embryo fibroblasts, MDA: Malondialdehyde, AR: Androgen Receptor, TNF-α: Tumor Necrosis Factor-alpha, 
IL-6: Interleukin 6, SOD: Superoxide Dismutase, PTP1B: Protein Tyrosine Phosphatase 1B, HOMAIR: Homeostasis Model Assessment of Insulin Resistance, ROS: Reactive Oxygen Species. 
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Table 1. Types and nutraceutical content of Asian plants with potential to improve diabetes mellitus outcome (cont.) 
 
Plant name Phytochemicals Potential effect on DM 
Trigonella foenum-graecum 
(Kelabat in Indonesia, Halba in Malaysia, Methi 
in India, Hu’ lu’ ba’ in China, Luk Sanai in 
Thailand) 

Saponin, 4-hidroksiisoleusin,  ttrigonelin, alkaloid, and steroid92 -↓ glucose and lipid152 
-↑ insulin sensitivity and glucose uptake in peripheral 
tissues153 

Gymnema sylvestre 
(Gurmart in Indonesia, Pokok Mas Cotek 
Gurmar in Malaysia, Gurmar in India, Jian 
ming cao in China, Khwao Khurea in Thailand) 

saponin triterpena, gimnemik acid, and gimnemasaponin -Regeneration of ߚ cells in the pancreas 
reduce blood sugar levels154 

Allium sativum 
(Bawang Putih in Indonesia and Malaysia, 
Lahsun in India, Da suan in China, Krathiam in 
Thailand) 

allicin, allixin, ajoene, dan senyawa organosulfur lainnya -↓  fasting blood sugar level155 
-↑ insulin secretion from ߚ cells 
-↑ endogenous antioxidant defense156 

Tisanes 
(Wedang in Indonesia, Teh herbal in Malaysia, 
Kadha in India, Huacao cha in China, Nam 
Chea in Thailand) 

alkaloids, carotenoids,  
coumarins, flavonoids, phenolic acids, polyacetylenes, saponins, 
terpenoids93  

-↑ insulin secretion93 

Rhus chinensis Mill 
(Kakkarsingi in India, Yan fu mu in China) 

Leaves, stem and branches: Phenolics (protocatechuic acid, p-coumaric 
acid, gallic acid, catechin, quercetin, methyl gallate), antioxidants 
(hydroxydammarenone, semialactone, moronic acid, betulonic acid) 
 
Fruit: Antioxidants, phenolics (gallic acid, tannic acid), flavanoids 
Gall: Hydrolysable tannins (gallotannins), phenolic acid (gallic acid), 
antioxidant 

-↓ Postprandial glucose levels95 

Murraya koenigii l. (meethi nimba) 
(Daun Kari in Indonesia and Malaysia, Kadi 
Patta in India, Yue ju in China, Bai karip in 
Thailand) 

α-pinene, sabinene, dan β-caryophyllene -↓ hyperglicemia 
-↑ insulin sensitivity94 

Andrographis paniculata (Burm.f.) Nees/ Fa 
thalai chon157 

(Sambiloto in Indonesia, Hempedu bumi in 
Malaysia, Kalmegh in India, Chuan xin lian in 
China, Fah Talai Jone in Thailand) 

Aerial parts :  
Glycosides, terpenoid, alkaloid, flavonoid, saponin, tannins 

-↓ HbA1c  

Pluchea indica (L.) Less/ Khluu64 
(Beluntas in Indonesia and Malaysia, rasna in 
India, Po bu mu in China, Phak Krathin Ban in 
Thailand) 

Leaves : chlorogenic acid  (CGA), 3,4-O-dicaffeoylquinic acid (3,4 
diCQA), 3,5-O-dicaffeoylquinic acid (3,5 
diCQA), quercetin, kaempferol, myricetin, monoterpenes, 
and sesquiterpenoids 

-↓ Blood glucose levels 

 
3-HMG Co-A: 3-Hydroxy-3-Methylglutaryl-Coenzyme A, LDL: Low-Density Lipoprotein, HbA1C: Hemoglobin A1c, AKT : serine/threonine kinase, AMPK: AMP-activated protein kinase, HepG2: 
Human Hepatocellular Carcinoma cell line 2, GLUT-4 : Glucose Trasporter 4, 3T3-L1: mouse embryo fibroblasts, MDA: Malondialdehyde, AR: Androgen Receptor, TNF-α: Tumor Necrosis Factor-alpha, 
IL-6: Interleukin 6, SOD: Superoxide Dismutase, PTP1B: Protein Tyrosine Phosphatase 1B, HOMAIR: Homeostasis Model Assessment of Insulin Resistance, ROS: Reactive Oxygen Species. 
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Table 1. Types and nutraceutical content of Asian plants with potential to improve diabetes mellitus outcome (cont.) 
 
Plant name Phytochemicals Potential effect on DM 
Apium graveolens L. /Khuen chaai65 (Celery) 
(Seledri in Indonesia, Seleri in Malaysia, Ajmod 
in India, Qincai in China, Khuen Chai in 
Thailand) 

flavonoids, alkaloids, terpenoids, and phenolic acids -↓ Blood glucose levels 

Aloe vera (L.) Burm.f./Wan Hang Chora Khe 
Nees67–69,158 

(Lidah buaya in Indonesia and Malaysia, 
Ghritkumari in India, Lu hui in China, Wan 
Hang Chora Khe Nees in Thailand) 

Aloe-emodin, Aloetic-acid, Anthranol, Barbaloin, Mannan, 8-C-glusoly-
(2′-O-cinnamoly), −7-O-methlyaloediol A, Alkaline phosphatese, amylase, 
bradykinase, carboxypeptidase, catalase, cyclooxidase, cyclooxygenase, 
lipase, oxidase, phosphoenolpyruvate, carboxylase 

-↓ weight 
-↓ fat mass 
-↓ insulin response 
-↓ Blood glucose levels 

Ipomoea aquatica Forssk./ Pak bung70 euphornin, lucidenic acid, and myricitin glycosides, -↓ Blood glucose levels 
Lagerstroemia speciosa (L.) Pers./ Inthanin 
nam71 

(Kangkung in Indonesia and Malaysia, Kalmi 
Saag in India, Kong xin cai in China, pak bung 
in Thailand) 

flavonoids, saponins, tannins, steroids, and triterpenoids -↓ Blood glucose levels 
 

Terminalia bellirica (Gaertn.) Roxb. /Samo phi 
phek75 

(Balirik in Indonesia, Bahera in Malaysia and 
India, He zi in China, Samo Phi Phe in 
Thailand) 

Fruit: gallic acid, galloyl glucose, chebulagic acid, ellagic acid, β-sitosterol, 
ethylgallate, sugar, bellericanin, lignans, and flavan. 

-↓ Blood glucose levels 
-↓ Lipids levels 
-↑ Antioxidants 

Terminalia chebula Retz./ Samo thai75 

(Kayu kuning / haritaki in Indonesia, Ketepeng 
and Buah Keras in Malaysia, Haritaki in India, 
He zi in China, Samo Thailand) 

chebulanin, chebulagic acid, and chebulinic acid -↓ Blood glucose levels 
-↓ Lipids levels 
-↑ Antioxidants 

Morinda citrifolia L. /Yo Baan79 (noni) 
(Mengkudu in Indonesia and Malaysia, Indian 
Mulberry/noni in India, Ba ji Tian in China, Yo 
Ban in Thailand) 

amino acids, anthraquinones, fatty acids, flavonoids, iridoids, 
lignans, polysaccharides, sterols, terpenoid 
 
Bark, leaf: α-ketoglutaric and malic acids 

-↓ Blood glucose levels 

Zea mays L./Khao Phot78 

(Jagung in Indonesia and Malaysia, Makai in 
India, Yumi in China, Khao Phot in Thailand) 

volatile oils, steroids, saponins, polysaccharides, alkaloids, 
flavonoids, organic acids and other phenolic compounds 

-↓ Blood glucose levels 
-↓ oxidative damage in the brain of diabetic mice65  

Eclipta prostrata (L.) / Ka meng 80 
(Urang-aring in Indonesia and Malaysia, 
Bhringraj in India, Mo Han Lian in China, Ka 
meng in Thailand) 

Whole plant: wedelolactone, eclalbasaponins, ursolic acid, oleanolic acid, 
luteolin, and apigenin  

-↓ Blood glucose levels 
-↓ Postprandial glucose levels 

 
3-HMG Co-A: 3-Hydroxy-3-Methylglutaryl-Coenzyme A, LDL: Low-Density Lipoprotein, HbA1C: Hemoglobin A1c, AKT : serine/threonine kinase, AMPK: AMP-activated protein kinase, HepG2: 
Human Hepatocellular Carcinoma cell line 2, GLUT-4 : Glucose Trasporter 4, 3T3-L1: mouse embryo fibroblasts, MDA: Malondialdehyde, AR: Androgen Receptor, TNF-α: Tumor Necrosis Factor-alpha, 
IL-6: Interleukin 6, SOD: Superoxide Dismutase, PTP1B: Protein Tyrosine Phosphatase 1B, HOMAIR: Homeostasis Model Assessment of Insulin Resistance, ROS: Reactive Oxygen Species. 
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Table 1. Types and nutraceutical content of Asian plants with potential to improve diabetes mellitus outcome (cont.) 
 
Plant name Phytochemicals Potential effect on DM 
Phyllanthus amarus / Ma kham pom81,82 

(Meniran in Indonesia and Malaysia, Bhui Amla 
in India, Yi ke yin chen in China, Ma kham pom 
in Thailand) 

Alkaloids: securinine, epibubbialine, isobubbialine -↓ Blood glucose levels 
-↓ Postprandial glucose levels 

Curcuma longa L. /Khamin83 

(Kunyit in Indonesia and Malaysia, Haldi in 
India, Jiang Huang in China, Khamin in 
Thailand) 
 

Rhizomes: Curcumin, curcumol, and bisdemethoxycurcumin -↓ Blood glucose levels 
-↓ Postprandial glucose levels 
-↓ Arterial stiffness, 
-↓ Endothelial dysfunction 
-↑ β-cells function 

Gymnema inodorum (Lour.) Decne./Chiang 
Daa72 

(Chiang Daa in Thailand) 

Leaves: phenolic acids, flavonoids, triterpenoid compounds, and pregnane 
glycosides 

-↓ Postprandial glucose levels 

Aegle marmelos (L.) / Ma tuum73 

(Maja in Indonesia, Pokok Maja in Malaysia, 
Bael in India, Mu Ju in China, Matum in 
Thailand) 

marmenol, marmin, marmelosin, marmelide, psoralen, alloimperatorin, 
rutaretin, scopoletin, aegelin, marmelin, fagarine, anhydromarmelin, 
limonene, â-phellandrene, betulinic acid, marmesin, imperatorin, 
marmelosin, luvangentin and auroptene 

-↓ Postprandial glucose levels 

Glycine max (L.) Merr159/black soybean 
(Kedelai in Indonesia, kacang soya in Malaysia, 
Soya Bean in India, Dadou in China, Tua Luang 
in Thailand) 

Leaf: isoflavones and anthocyanins -↓ Postprandial glucose levels 

Salacia chinensis L./ Kam paeng jed chan160 

(Srigading/akar kuning in Indonesia, Akar 
kuning/seruntun in Malaysia, Ponkoranti in 
India, Hei Mian Shen in China, Ching-cha-cha 
in Thailand) 

Steam: salacinol, kotalanol, ponkoranol, and salaprinol and their 
corresponding de-0-sulfonated compounds. In addition, triterpenes, 
sesquiterpenes, lignans, xanthones, flavanols, flavonoids 

-↓ Postprandial glucose levels 
-Hypoglycemic effect 

Artocarpus heterophyllus Lam. / Khanun66 
(Jackfruit) 
(Nangka in Indonesia and Malaysia, Kethal in 
India, Boluomi in China, Khanun in Thailand) 

Leaves: flavonoid -↑ insulin response 

Phyllanthus emblica L./ Ma Kham Pom77 

(Malaka/Ciremai India in Indonesia, 
Melaka/Pokok malaka in Malaysia, Amla in 
India, Yougan in China, Ma-Kham-Pom in 
Thailand) 

Fruits: phenolic compounds (such as tannins, phenolic acids, and 
flavonoids), alkaloids, phytosterols, terpenoids, organic acids, amino acids, 
and vitamins 

-↓ oxidative stress77 

 
3-HMG Co-A: 3-Hydroxy-3-Methylglutaryl-Coenzyme A, LDL: Low-Density Lipoprotein, HbA1C: Hemoglobin A1c, AKT : serine/threonine kinase, AMPK: AMP-activated protein kinase, HepG2: 
Human Hepatocellular Carcinoma cell line 2, GLUT-4 : Glucose Trasporter 4, 3T3-L1: mouse embryo fibroblasts, MDA: Malondialdehyde, AR: Androgen Receptor, TNF-α: Tumor Necrosis Factor-alpha, 
IL-6: Interleukin 6, SOD: Superoxide Dismutase, PTP1B: Protein Tyrosine Phosphatase 1B, HOMAIR: Homeostasis Model Assessment of Insulin Resistance, ROS: Reactive Oxygen Species. 
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Table 1. Types and nutraceutical content of Asian plants with potential to improve diabetes mellitus outcome (cont.) 
 
Plant name Phytochemicals Potential effect on DM 
Guava leaf / Psidium guajava Linn 
(Jambu biji/Jambu klutuk in Indonesia, Jambu 
batu in Malaysia, Amrud in India, Fan shiliu in 
China, Farang in Thailand) 
 

Potassium, phosporus, nitrogen, ascorbic acid, ficose, rhamnose, arabinose, 
galactose, glucose, mannose, xylose, phenol, sulfat, carbohydtrat, proteins, 
vitamin, minerals, α-Pinene Benzaldehyde, p-cymene 0.52% 
Limonene, 1,8-Cineole, β-cis-Ocimene, γ-Terpinene, α-Terpineol, β-
Caryophyllene, α-Humulene, Quercetin, avicularin, apigenin, guaijaverin, 
kaempferol, hyperin, myricetin, Gallic acid, catechin, epicatechin,  
chlorogenic acid, epigallocatechin gallate, caffeic acid, Proanthocyanidins 
(PAs)161  

-↑ the function of β-cells of pancreatic islets and 
hepatocyte morphology108 
-↓ activity of the blood glucose homeostasis enzyme 
dipeptidyl-peptidase IV162 
-inhibited intracellular lipid aggregation by impeding 
glucose uptake through GLUT-4 in vitro and revealed no 
distinct toxicity for 3T3-L1 adipose cells163 
-reduction in total cholesterol, triglycerides, glycated 
serum protein, creatinine, fasting blood glucose, and 
malonaldehyde content, and increased total superoxide 
dismutase and total antioxidant capacity enzyme activity 
in vivo164  
-inhibitors of α-amylase and α-glucosidase enzyme can 
decline postprandial glucose absorption165  

Kaempferia galangal L 
(Kencur in Indonesia, Cekur in Malaysia, 
Chandramula in India, Shajiang in China, Proh 
Horm in Thailand) 

Terpenoids (kaempulchraol I, E, L, kaemgalangol A) phenolics (p-metho-
xybenzoicacid, p-hydroxybenzoic acid, vanillic acid, ferulic acid), and 
flavonoids (kaempferol, luteolin, kaempferide)166  

-↓ blood lipid levels, along with reducing MDA, AR, 
TNF-α, and IL-6 levels and increasing SOD levels, ↓ 
blood glucose, insulin resistance, reducing the AR 
pathway as well as anti-oxidation and anti-
inflammation167  

Cinnamomum verum 
(Kayu manis in Indonesia and Malaysia, 
Dalchini in India, ZhenGui in China, Ob Chuey 
in Thailand) 
 

cinnamic acid , E)-cinnamaldehyde , cinnamaldehyde dimethyl aceta , 
Ascorbic acid, Fumaric acid, Caffeic acid, Luteolin-7-rutinoside, Luteolin 
7-glycoside, Rutin, Apigenin 7-glycoside, Quercitrin, Quercetin, 
kaempferol, Naringenin, Luteolin, Apigenin, Hispidulin, Chrysin168,169 

-memodulasi pelepasan insulin dan sinyal reseptor 
insulin, meningkatkan jumlah GLUT4, anti-alfa-
glukosidase, anti-alfa amilase  

Zingiber aromaticum Veleton 
(Lempuyang in Indonesia, Lempoyang in 
Malaysia, Fangxiang Jiang in China, Plai 
Farang in Thailand) 

humulatrien-5-ol-8-one, kaempferol-3,4'-di-O-methyl ether, and (S)-6-
gingerol.45 

-Inhibits the activity of the enzyme protein tyrosine 
phosphatase 1B (PTP1B)45 

Melastoma malabathricum 
(Senduduk in Indonesia and Malaysia, Malabar 
Malastome in India, Ye mudan in China, Koi / 
Ngaa Khao in Thailand) 
 

quercetin, quercitrin, rutin, kaempferol, kaempferol-3-O-(2″,6″-di-O-p-
trans-coumaroyl)-β-D-glucoside, naringin, malabathrins A, B, C, and D, 
nobotanins B, D, G, and H, casuarictin, strictinin, pterocarinin C, 
pedunculagin, epicatechin, epicatechin gallate, and patriscabatrin.170 

-↓ Blood glucose levels47 

 
3-HMG Co-A: 3-Hydroxy-3-Methylglutaryl-Coenzyme A, LDL: Low-Density Lipoprotein, HbA1C: Hemoglobin A1c, AKT : serine/threonine kinase, AMPK: AMP-activated protein kinase, HepG2: 
Human Hepatocellular Carcinoma cell line 2, GLUT-4 : Glucose Trasporter 4, 3T3-L1: mouse embryo fibroblasts, MDA: Malondialdehyde, AR: Androgen Receptor, TNF-α: Tumor Necrosis Factor-alpha, 
IL-6: Interleukin 6, SOD: Superoxide Dismutase, PTP1B: Protein Tyrosine Phosphatase 1B, HOMAIR: Homeostasis Model Assessment of Insulin Resistance, ROS: Reactive Oxygen Species. 
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Table 1. Types and nutraceutical content of Asian plants with potential to improve diabetes mellitus outcome (cont.) 
 
Plant name Phytochemicals Potential effect on DM 
Soncus arvensis L. 
(Tempuyung in Indonesia, Tempuyung/Daun 
dewa liar in Malaysia, ku cai in China, Phak 
Kat Khwai in Thailand) 

Terpenoid, flavonoid (catechin, mirecetin, kaempferol, quercetin), 
phenolic, alkaloids.171 

-↓ blood glucose levels and cell regeneration in the 
tubular48 

Myristica fragrans 
(Pala in Indonesia and Malaysia, Jaiphal in 
India, Rou Dou Kou in China, Chan Thet in 
Thailand) 

ellagic acid (35.42 mg/g), rutin (91.07 mg/g), quercitrin (35.83 mg/g), 
quercetin (41.16 mg/g), and kaempferol (36.81 mg/g)172 

-↓  fasting blood glucose and HbA1C173 

Zingiber officinale 
(Jahe in Indonesia, Halia in Malaysia, Adrak in 
India, Sheng Jiang in China, Khing in Thailand) 
 

ginger, such as gingerol, shogaols, paradols, and zingerone, phenolic 
compounds (rutin, kaempferol, 6-gingerol, zingerone, naringenin, and 
quercetin).174 

-↓ fasting blood glucose, HbA1C, HOMAIR50 

Persea americana 
(Alpukat in Indonesia, Avocado in Malaysia, 
Makhanphal in India, Niu You Guo in China, 
Abo-Ka-Do in Thailand) 

Kaempferol 3-O-β-d-fucopyranoside, juglanin and astragaline, afzelin and 
quercitrin, catechin and epicatechin175 

-↓  fasting blood glucose and regeneration of islets of 
Langerha51 

Piper betle 
(Sirih in Indonesia, Sireh in Malaysia, Paan in 
India, Luo Ye in China, Phlu in Thailand) 

alkaloids, terpenoids/steroids, flavonoids, polyphenols, tannins, and 
saponins176 

-↓ Blood glucose levels52 

Pluchea indica 
(Beluntas in Indonesia and Malaysia, Rasan in 
India, Ci Hao in China, Khlu in Thailand) 

kaempferol 3-[2′'',3′'',5′''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-
glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3′'-
sulfatoglucoside), and kaempferol 7,4′-dimethyl ether 3-O-sulfate177 

-↓ Blood glucose levels53 

Phaseolus radiatus L 
(Kacang Hijau in Indonesia and Malaysia, 
Moong Dal in India, Lu Dou in China, Tua Kiew 
in Thailand) 
 

flavonol (quercetin and kaempferol) aglycones 
while few others contain either of the two aglycone.178 

-↓ROS formation, inhibits alpha glucosidase and alpha 
amylase activity179 

 
3-HMG Co-A: 3-Hydroxy-3-Methylglutaryl-Coenzyme A, LDL: Low-Density Lipoprotein, HbA1C: Hemoglobin A1c, AKT : serine/threonine kinase, AMPK: AMP-activated protein kinase, HepG2: 
Human Hepatocellular Carcinoma cell line 2, GLUT-4 : Glucose Trasporter 4, 3T3-L1: mouse embryo fibroblasts, MDA: Malondialdehyde, AR: Androgen Receptor, TNF-α: Tumor Necrosis Factor-alpha, 
IL-6: Interleukin 6, SOD: Superoxide Dismutase, PTP1B: Protein Tyrosine Phosphatase 1B, HOMAIR: Homeostasis Model Assessment of Insulin Resistance, ROS: Reactive Oxygen Species. 
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Table 2. Modulation of gene expression in diabetic conditions by traditional nutraceuticals compound 
 

Nutraceutical compound 
and target genes 

Actions References 

Curcumin   
 SOD, GSH Upregulate SOD expression in the liver 

Significantly increased reduced glutathione (GSH) levels in diabetic rats, highlighting its ability to enhance antioxidant 
defenses. 
Activate the Nrf2 pathway, which protects β-cells from oxidative damage. 

Xia et al. 2020103 
Belhan et al. 2020101 
Serafini et al. 2020105 
Shahcheraghi et al. 2021106 

Kaempferol (flavonoid)   
 SOD1, SOD2. GSH-

Px 
 

Upregulates the expression of SOD1 and SOD2 genes 
Increasing glutathione peroxidase (GSH-Px) activity, enhancing intracellular GSH levels, and promoting the nuclear 
translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of antioxidant genes. 

Kluska et al. 2022123 
Al-Abbasi and Kazmi, 2022122  
Alshehri et al. 2021124 

 IRS-1, PI3K, PIP2, 
PIP3, AKT, GLUT4 
 

Enhances insulin signaling in diabetic conditions by modulating IRS-1 gene expression, upregulates IRS-1 in skeletal 
muscle, activating the insulin receptor pathway. This leads to PI3K activation, PIP3 production, and subsequent activation 
of AKT, which phosphorylates downstream targets, including GLUT4. The process facilitates GLUT4 translocation to the 
plasma membrane, improving glucose uptake into muscle cells and enhancing cellular glucose utilization. 

Jayachandran et al, 2020120 
Moore at al. 2023102 
 
 
 

 SIRT1 Modulates the SIRT1 pathway Chong et al., 2024111 
Cinnamon   
 PI3K, AKT, PPARy Regulating the expression of genes related to the insulin signaling pathway (PI3K and AKT), and enhancing the expression 

of PPARγ genes, which can reduce insulin resistance. 
Cortez-Navarrete et al. 2023104 

Saponin   
 SOD1 

 
Activate SOD1 gene expression. 
 

Kim et al. 1996125 
Cui et al. 2021126 

 TCF7F2, β-catenin Increasing activities of SOD, GSH-Px and CAT in the 200 μg/mL alfalfa saponin 
protecting β cell survival and regeneration by mechanisms involving the activation of Wingless-related integration site 
(Wnt3a)/β-catenin/ transcription factor 7-like 2 (TCF7L2) signaling 

Cui et al. 2020127 
 
 

Quercetin (flavonoids)   
 SOD1, CAT, GPX1 

 
Quercetin normalized the expression mRNA levels of CAT, SOD1, GPX1 to near the normal level. Moreover, quercetin 
treatment normalized TAC levels. 

Bagheri et al. 2021180 
 

 Sirt3 Protected islet β-cells from oxidation-induced apoptosis via Sirt3 in T2DM Wang et al. 2021181 
 
glutathione (GSH), glutathione peroxidase (GSH-Px), nuclear factor erythroid 2-related factor 2 (Nrf2), insulin receptor substrate (IRS),  phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), Akt 
substrate of 160 kDa (AS160), glucose transporter 4 (GLUT4), phosphatidylinositol-3,4-bisphosphate (PIP2), phosphatidylinositol-3,4,5-trisphosphate (PIP3), sirtuin 1 (SIRT1), superoxide dismutase 
(SOD), peroxisome proliferator-activated receptor gamma (PPARγ), Wingless-related integration site (Wnt3a)/β-catenin/ transcription factor 7-like 2 (TCF7L2), catalase (CAT), protein kinase B (PKB), 
glucose transporter−2 (GLUT−2), high glucose (HG), endoplasmic reticulum (ER), cyclin-dependent kinase 5 (CDK5), pancreatic duodenal homeobox 1 (PDX1), sarcoendoplasmic reticulum calcium 
ATPase 2b (SERCA2b), nitric oxide (NO), nuclear factor kappa-light-chain-enhancer of activated B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin (IL), intercellular adhesion molecule 1 
(ICAM-1), vascular cell adhesion protein 1 (VCAM-1), transforming growth factor beta (TGF-β), AMP-activated protein kinase (AMPK), phosphorylated transducer of regulated CREB 2 (p-TORC2), 
uncoupling  protein 2 (UCP2),  insulinoma cell line (INS-1E).  
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Table 2. Modulation of gene expression in diabetic conditions by traditional nutraceuticals compound 
 

Nutraceutical compound 
and target genes 

Actions References 

Myricetin 
(flavonoid) 

  

 PKB, IRS1, IRS2, 
GLUT2, GLUT4 

Normalized the insulin signaling molecule expression like PKB (protein kinase B), IRS−1 (insulin receptor−1), IRS−2 
(insulin receptor−2), GLUT−2 (glucose transporter−2) and GLUT−4 (glucose transporter−4) 

Kandasamy et al. 2014182 
 

 CDK5, PDX1, 
SERCA2b 

Protects β-cells from high glucose (HG)-induced apoptosis by mitigating endoplasmic reticulum (ER) stress, potentially via 
cyclin-dependent kinase 5 (CDK5) inhibition, leading to the upregulation of pancreatic duodenal homeobox 1 (PDX1) and 
sarcoendoplasmic reticulum calcium ATPase 2b (SERCA2b). 

Karunakaran et al. 2019183 
 
 

Anthocyanin   
 increases nitric oxide (NO) bioactivity and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), which induces 

the production of endogenous antioxidants and limits oxidative stress, proposed to downregulate nuclear factor kappa-light-
chain-enhancer of activated B (NF-κB) and lead to reduced expression and production of cytokines involved (tumor 
necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion 
protein 1 (VCAM-1)) and further reduces the inflammatory response. NF-κB downregulates transforming growth factor 
beta (TGF-β) expression 

Sapian et al. 2022112 

Terpenoid   
 IRS-1, Akt, GLUT4 Up-regulated the expression of the insulin receptor, insulin receptor substrate 1, glycogen synthase kinase 3β, Akt serine/ 

threonine kinase, and the transcript levels of GLUT4 and AMP-activated protein kinase. 
Singh et al. 2022121 

Alkaloids   
 p-AMPK, p-TORC2, 

SOD1, UCP2 
Up-regulated protein expression of liver kinase, AMPK, p-AMPK and p-TORC2. Down-regulated protein expression of 
gluconeogenic Enzymes Inhibited high glucose-elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and 
AMPK phosphorylation in INS-1E cells 

Dange et al. 2016113 
Dong et al. 2016184 
Jiang et al. 2015128 

Gallic acid   
 PPARy, GLUT4, Akt Concurrent activation of PPAR-γ and C/EBP promotes GLUT4 translocation in adipose cells; improves insulin sensitivity 

through regulation of Akt and AMPK signaling pathways; regulation of TNF-α and adipocytokine expression; and improves 
β-cell function by inhibiting caspase-9-related to cell apoptosis. 

Xu et al. 2021114 

 
glutathione (GSH), glutathione peroxidase (GSH-Px), nuclear factor erythroid 2-related factor 2 (Nrf2), insulin receptor substrate (IRS),  phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), Akt 
substrate of 160 kDa (AS160), glucose transporter 4 (GLUT4), phosphatidylinositol-3,4-bisphosphate (PIP2), phosphatidylinositol-3,4,5-trisphosphate (PIP3), sirtuin 1 (SIRT1), superoxide dismutase 
(SOD), peroxisome proliferator-activated receptor gamma (PPARγ), Wingless-related integration site (Wnt3a)/β-catenin/ transcription factor 7-like 2 (TCF7L2), catalase (CAT), protein kinase B (PKB), 
glucose transporter−2 (GLUT−2), high glucose (HG), endoplasmic reticulum (ER), cyclin-dependent kinase 5 (CDK5), pancreatic duodenal homeobox 1 (PDX1), sarcoendoplasmic reticulum calcium 
ATPase 2b (SERCA2b), nitric oxide (NO), nuclear factor kappa-light-chain-enhancer of activated B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin (IL), intercellular adhesion molecule 1 
(ICAM-1), vascular cell adhesion protein 1 (VCAM-1), transforming growth factor beta (TGF-β), AMP-activated protein kinase (AMPK), phosphorylated transducer of regulated CREB 2 (p-TORC2), 
uncoupling  protein 2 (UCP2),  insulinoma cell line (INS-1E).  
 


