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Establishment and validation of a machine learning
model to stratify malnutrition risk in hospitalized older
patients with chronic heart failure

Qiuhong Sun BD! and Jing Che BD?
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Background and Objectives: Malnutrition among older hospitalized adults with chronic heart failure (CHF) is
associated with adverse clinical outcomes, yet reliable early risk stratification tools remain lacking. This study
aimed to develop and validate a machine learning (ML) model for malnutrition risk stratification in this popula-
tion. Methods and Study Design: Malnutrition among older hospitalized adults with chronic heart failure (CHF)
is associated with adverse clinical outcomes, yet reliable early risk stratification tools remain lacking. This study
aimed to develop and validate a machine learning (ML) model for malnutrition risk stratification in this popula-
tion. Results: Malnutrition prevalence was 44.1% (348/790). In the internal testing, CatBoost (CAT) achieved
superior performance with an AUC of 0.901 (95% confidence interval [CI]: 0.858-0.943), accuracy of 0.840, re-
call of 0.753, and the lowest Brier score of 0.113. This model demonstrated strong calibration, clinical utility, and
the highest composite score (62/64). External validation confirmed CAT’s generalizability (AUC: 0.916, 95% CI:
0.887-0.945). SHAP analysis identified body mass index (BMI), calf circumference, New York Heart Association
(NYHA) classification, age, and diabetes as significant contributors to malnutrition risk. Conclusions: The CAT-
based model effectively stratifies malnutrition risk in older hospitalized CHF patients, offering a tool for early in-
tervention to improve outcomes. Further multicenter prospective studies are needed to validate its real-world ap-

plicability.
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INTRODUCTION

Chronic heart failure (CHF) is a complex clinical syn-
drome characterized by structural and functional cardiac
impairments that diminish the heart’s ability to pump
blood effectively, leading to insufficient perfusion to sat-
isfy metabolic requirements.! As a leading cause of hospi-
talization and disability in older adults, CHF presents
significant challenges to healthcare systems worldwide.?
Epidemiological data indicate that there are more than 26
million cases globally, with escalating morbidity and
mortality rates attributable to aging populations and the
increasing prevalence of comorbidities.® # The prognosis
for CHF remains poor, with a five-year mortality rate of
approximately 50% following diagnosis.’ Older adults are
disproportionately susceptible to adverse outcomes asso-
ciated with CHF due to age-related physiological decline,
multimorbidity, and reduced physiological reserve.®
These pathophysiological processes not only heighten
mortality risks but also compromise physical and psycho-
logical well-being, resulting in substantially reduced qual-
ity of life, frequent hospitalizations, and greater caregiver
dependency.’

From a metabolic perspective, adequate nutrition is
crucial for preserving myocardial contractility and cardiac
efficiency, acting as a protective mechanism against
energy depletion in failing hearts.® However, as CHF

progresses, malnutrition disrupts this balance, leading to
immune dysfunction, prolonged hospitalization, increased
readmission rates, and heightened mortality risk.’ Clini-
cally, malnutrition presents across a spectrum, ranging
from reduced appetite and weight loss to sarcopenia, se-
vere cardiac cachexia, chronic inflammation, and meta-
bolic derangements.!® Alarmingly, the prevalence of mal-
nutrition increases with disease severity, affecting up to
90% of CHF patients. This increase is driven by factors
such as aging, multiple comorbidities, and intestinal mal-
absorption.'! Hospitalization further exacerbates nutri-
tional decline, as patients face acute stressors, dietary
inconsistencies, and physiological deterioration.'? Despite
its significant impact on patient outcomes, malnutrition
remains underdiagnosed due to its complex etiology and
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the lack of robust screening methods. This highlights the
need for innovative strategies to accurately predict malnu-
trition risk and enable early intervention, ultimately en-
hancing clinical care and patient quality of life.

Machine learning (ML) provides a transformative ap-
proach to addressing complex clinical challenges through
its capacity to analyze multidimensional datasets, identify
subtle predictive patterns, and generate individualized
risk assessments.!® In healthcare, ML has emerged as a
powerful tool for prognostication in HF, demonstrating
efficacy in predicting mortality, readmissions, and thera-
peutic strategy optimization.'* For example, ML models
have been employed to predict three-year all-cause mor-
tality in HF patients using echocardiographic pheno-
types'> and to assess the in-hospital prognosis of acute HF
patients through electronic health record (EHR) data.'®
These studies underscore ML’s ability to detect nuanced
associations that may not be apparent with conventional
statistical methods. Despite these advancements, the ap-
plication of ML to address malnutrition—a critical yet
often underrecognized comorbidity in older adults with
CHF—remains underexplored. Current screening tools
(e.g., MUST, COUNT) exhibit limitations due to their
insufficient specificity for HF pathophysiology and fail-
ure to incorporate disease-specific factors.!” ¥ This gap
highlights the potential for ML-based approaches to im-
prove the accuracy of nutritional risk assessments by in-
tegrating real-time clinical, nutritional, and biomarker
data.

Therefore, this study aims to construct and validate an
ML-based model for identifying and stratifying the risk of
malnutrition in hospitalized older adults with CHF. By
leveraging comprehensive clinical data, we developed
and rigorously validated a screening model designed to
assist healthcare professionals in identifying patients at
increased risk of malnutrition. While further prospective
studies are needed to confirm clinical utility, this model
represents a preliminary tool that may support early risk
stratification, enabling clinicians to consider tailored nu-
tritional interventions as part of broader patient manage-
ment strategies.

METHODS

Study design and patients

In this prospective study, data were collected from 1,128
older adults diagnosed with CHF at two medical centers
(Heping and Hunnan) affiliated with the First Affiliated
Hospital of China Medical University between January
2021 and December 2024. The model development co-
hort, consisting of participants enrolled at Heping Medi-
cal Center from January 2021 to June 2023, was random-
ly divided into a training set and an internal testing set at
a 7:3 ratio. Participants recruited from Hunnan Medical
Center between July 2023 and December 2024 constitut-
ed the external validation set. This study received approv-
al from the Ethics Committee of the First Affiliated Hos-
pital of China Medical University (Ethical Approval No.
EC-2021-187-2) and was conducted in accordance with
the principles of the Declaration of Helsinki. Written in-
formed consent was obtained from all participants prior to
the study.

Inclusion criteria were as follows: (1) age > 60 years;
(2) confirmed diagnosis of CHF according to the estab-
lished guidelines;l (3) New York Heart Association
(NYHA) functional class II-IV with clinical stability; (4)
conscious and able to provide written informed consent;
(5) incomplete data <10%. Exclusion criteria included:
(1) newly diagnosed acute heart failure (HF) during hos-
pitalization (e.g., acute myocardial infarction) or specific
cardiac conditions (e.g., congenital heart disease, hyper-
thyroid heart disease, or cardiac transplantation); (2)
comorbidities associated with increased short-term mor-
tality risk or severe organ dysfunction (e.g., life-
threatening thromboembolic events, severe infection, ac-
tive malignancies, acute pancreatitis, hepatic/renal failure,
or uncontrolled hyperthyroidism); (3) history of gastric
bypass surgery, inability to tolerate oral intake, or diag-
nosed anorexia nervosa; (4) receipt of ongoing long-term
nutritional support at admission; (5) cognitive impairment
or psychiatric disorders; (6) treatment in intensive care or
surgical units. Following comprehensive screening, 1,128
patients met the eligibility requirements and were en-
rolled in this study. The participant selection workflow is
illustrated in Figure 1.

Data collection

Clinical data from all participants were prospectively col-
lected and categorized as follows: (1) Demographic vari-
ables: age, gender (men/women), residence (rural/urban),
education level (below high school or above), monthly
household income (yuan), body mass index (BMI,
kg/m2), living arrangement (living alone or not), dentition
status (number of natural teeth), current smoking status,
and alcohol consumption. (2) Functional capacity: hand-
grasp strength (kg), mid-upper arm circumference (cm),
and calf circumference (CC, cm). (3) Clinical data: CHF
duration (months), NYHA classification (II-IV), comor-
bidities (peripheral edema, hypertension, dyslipidemia,
diabetes, chronic obstructive pulmonary disease [COPD],
coronary heart disease [CHD], atrial fibrillation, valvular
heart disease, anemia, chronic kidney disease [CKD], and
gastrointestinal disease), and medication usage (diuretics,
mineralocorticoid receptor antagonist [MRA], angioten-
sin-converting enzyme inhibitors/angiotensin II receptor
blockers [ACE-I/ARB], B-blockers, and total number of
prescribed medications). (4) Laboratory parameters as-
sessed within 24 h of hospitalization included: total pro-
tein (TP, g/L), hemoglobin (HGB, g/L), creatinine (Cr,
mg/dL), sodium (Na, mmol/L), potassium (K, mmol/L),
fasting blood glucose (FBG, g/L), estimated glomerular
filtration rate (eGFR, mL/min/1.73m?), B-type natriuretic
peptide (BNP, mg/L), N-terminal pro-B-type natriuretic
peptide (NT-proBNP, ng/L), white blood cell count
(WBC, 10°L), albumin (Alb, mg/L), neutrophils (Neu,
10°/L), lymphocytes (Lym, 10°/L), platelets (PLT, 10°/L),
monocytes (Mon, 10%L), neutrophil-to-lymphocyte ratio
(NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-
to-monocyte ratio (LMR), and prognostic nutritional in-
dex (PNI).
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Data collection from Heping and Hunnan medical centers affiliated with
the Frist Affiliated Hospital of China Medical University
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Figure 1. Flowchart of the participant enrolment and study design.

Diagnostic criteria of malnutrition Screening 2002 (NRS-2002) tool was utilized to identify

Malnutrition was diagnosed according to the Global
Leadership Initiative on Malnutrition (GLIM) consensus
framework,'” employing a validated two-step approach
specifically designed for older adults with CHF. All par-
ticipants underwent a systematic nutritional evaluation
within 24 h of hospitalization. The Nutritional Risk

individuals at nutritional risk.?’ Patients with an NRS-
2002 score >3 underwent a confirmatory evaluation for
malnutrition, which required meeting at least one pheno-
typic criterion and one etiological criterion in accordance
with GLIM guidelines. Phenotypic criteria included:
weight loss >5% within six months or >10% beyond six
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months; BMI <18.5 kg/m? for individuals aged <70 years
or <20 kg/m?2 for those >70 years; and reduced muscle
mass, assessed via CC measurements (<30 cm for men;
<29.5 cm for women).?! Etiological criteria included
chronic inflammation, disease burden, reduced food in-
take, or impaired nutrient assimilation. In this cohort, all
participants inherently satisfied the disease burden crite-
rion owing to their CHF diagnosis.

Data processing and feature selection

Variables with >10% missing values were excluded to
avoid unreliable imputation. Remaining missing values
were imputed using MissForest, a non-parametric random
forest-based algorithm, selected for its ability to model
complex interactions in clinical data.?> Missing data pat-
terns in the model development cohort before and after
imputation are compared in Supplementary Figure 1. The
dataset was split into training (70%) and internal testing
(30%) sets using stratified random sampling to preserve
outcome distribution. Categorical variables were convert-
ed into factors with clinically meaningful labels to ensure
proper handling in downstream analyses. Continuous fea-
tures were standardized to zero mean and unit variance
using preproc_pipeline.fit_transform, ensuring the trans-
formation pipeline was fitted exclusively on the training
set to prevent leakage.

In this study, feature selection was conducted using the
Least Absolute Shrinkage and Selection Operator (LAS-
SO) regression with an L1 penalty, followed by multivar-
iable logistic regression. LASSO regression identified
risk factors with non-zero coefficients, thereby optimizing
model generalizability. The optimal regularization pa-
rameter (1) was selected via ten-fold cross-validation us-
ing the 1-standard-error rule (A-1se). This approach bal-
ances feature sparsity and predictive performance by se-
lecting the largest A value within one standard error of the
minimum cross-validated mean squared error (MSE).
This criterion prioritizes model simplicity to mitigate
overfitting risks.?> Variables retained by LASSO were
subsequently incorporated into the multivariable logistic
regression model, with coefficients estimated using max-
imum likelihood.

Modeling

This study employed a comprehensive range of ML algo-
rithms to ensure robust analytical outcomes. The imple-
mented models included Logistic Regression (LR), Neu-
ral Network (NNet), Support Vector Machine (SVM),
Naive Bayes (NB), Random Forest (RF), Extreme Gradi-
ent Boosting (XGB), Light Gradient Boosting Machine
(LGBM), and CATBoost (CAT). Detailed descriptions of
these algorithms, including their theoretical underpin-
nings, are provided in Supplementary Table 1. All eight
models were trained using identical input features to en-
sure methodological consistency. Hyperparameter opti-
mization was conducted using grid search and random-
ized search strategies, integrated with five-fold cross-
validation on the training dataset. This approach facilitat-
ed the systematic identification of optimal hyperparame-
ter configurations for each model, with the area under the
receiver operating characteristic curve (AUC-ROC) serv-
ing as the primary optimization metric. Detailed hyperpa-

rameter tuning results are presented in Supplementary
Table 2. The incorporation of cross-validation enhanced
model robustness, mitigated the risk of overfitting, and
improved the generalizability of predictive performance
across heterogeneous datasets.

Validation

Model performance was rigorously validated using a
combination of quantitative metrics and graphical anal-
yses. Eight evaluation metrics were calculated: AUC,
accuracy, precision, recall, specificity, negative predictive
value (NPV), F1 score, and Brier score.?* 2* Graphical
assessments included calibration curves to evaluate the
agreement between predicted probabilities and observed
outcomes and decision curve analysis (DCA) to assess
clinical net benefit across probability thresholds. Addi-
tionally, a composite scoring system adapted from estab-
lished methodologies was developed to provide a holistic
ranking of model performance.?* 26 This system integrat-
ed all eight metrics, assigning equal weights to each, to
generate a cumulative score on a 0-64 scale, where higher
scores indicate superior predictive performance.

Model explainability

Interpretability is essential in clinical ML to ensure model
trustworthiness and provide clinically actionable insights.
In this study, Shapley Additive exPlanations (SHAP), a
game theory-based framework, was employed to eluci-
date the decision logic of the final model.?’” SHAP quanti-
fies individual feature contributions to predictions by cal-
culating Shapley values, which reflect the marginal im-
pact of each feature relative to baseline expectations.
These values enable dual interpretability: global inter-
pretability that aggregates feature importance across the
dataset and local interpretability that attributes feature-
level contributions to individual predictions, thereby rec-
onciling the complexity of “black-box” models with cli-
nician-friendly explanations. To enhance transparency,
SHAP-derived insights were visualized through summary
plots, force plots, and waterfall plots. These visual tools
support rigorous model auditing and facilitate the transla-
tion of predictions into context-specific clinical interven-
tions.

Statistical analysis

All statistical analyses were performed using SPSS soft-
ware (version 27.0, IBM Corp.) and R software (version
4.4.1, Foundation for Statistical Computing). Continuous
variables, which were assessed for non-normal distribu-
tion, were reported as median with interquartile range
(IQR). Categorical variables were presented as frequen-
cies and proportions (%). Group differences in categorical
variables were evaluated using the chi-square test, while
non-parametric Wilcoxon rank-sum tests were applied to
continuous variables. Potential risk variables were quanti-
fied as odds ratios (ORs) with corresponding 95% confi-
dence intervals (CIs). A p-value (two-tailed) < 0.05, after
adjustment for multiple comparisons using false discov-
ery rate (FDR), was considered statistically significant.?®
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RESULTS

Patient’s baseline characteristics

The model development cohort consisted of 790 hospital-
ized older CHF patients, with a median age of 74.0 years
[IQR: 67.0, 80.0]. Among these participants, 56.2%
(444/790) were women, and 85.7% (677/790) exhibited
severe functional impairment (NYHA class III/IV). Mal-
nutrition was identified in 44.1% of the cohort (348/790),
whereas the remaining 55.9% (442/790) maintained a
normal nutritional status. Comparative baseline character-
istics between the malnutrition and non-malnutrition
groups were detailed in Table 1. For model development,
the cohort was divided into a training subset (n = 553,
70%) and an internal testing subset (n = 237, 30%), with
malnutrition prevalence rates of 45.4% (n = 251) and
40.9% (n = 97), respectively. As shown in Table S3, the
baseline characteristics between the training and internal
testing cohorts showed no statistically significant differ-
ences (all p > 0.05).

External validation was conducted using an independ-
ent cohort consisting of 338 hospitalized older CHF
adults. The prevalence of malnutrition in this validation
cohort was 40.5% (137/338), closely aligning with the
prevalence observed in the model development cohort
(44.1%). Baseline clinical characteristics of both the de-
velopment and external validation cohorts were compared
and presented in Supplementary Table 4.

Variable selection via LASSO regression

We employed LASSO regression with an L1 penalty term
to optimize feature selection by shrinking the coefficients
of redundant predictors to zero (Figure 2A). The optimal
regularization parameter (A = 0.043) was selected via ten-
fold cross-validation using the A-1se method (dashed blue
vertical line), effectively balancing predictive accuracy
with model complexity reduction (Figure 2B). This ap-
proach yielded eight robust risk factors: age, BMI, CC,
diabetes, hs-CRP, polypharmacy (> 5 medications), NY-
HA classification, and PNI (Figure 2C). These variables
were subsequently analyzed using multivariable logistic
regression, which confirmed significant associations with
malnutrition risk (all p < 0.05; Figure 2D). Following
correction for the FDR, all eight risk variables retained
statistical significance (Supplementary Table 5). Conse-
quently, these variables were selected for final model
construction.

Modeling and performance evaluation

The model development process utilized a grid search
strategy for hyperparameter optimization, in which con-
figurations were systematically selected to maximize
ROC-AUC performance. In the training set, the CAT
algorithms achieved superior discriminative performance
(AUC = 0.947, 95% CI: 0.930-0.964), followed by RF
(AUC = 0.914, 95% CI: 0.891-0.937) and XGB (AUC =
0.911, 95% CI: 0.888-0.935) (Figure 3A and 3B, Sup-
plementary Table 6). Furthermore, the CAT model exhib-
ited robust performance across various metrics, achieving
the highest composite score (63/64) in a multidimensional
assessment framework (Figure 3C). Calibration analysis
demonstrated favorable alignment of the CAT model’s
predicted probabilities with observed outcomes, as evi-

denced by its proximity to the ideal calibration curve and
the lowest Brier score (0.099) (Figure 3D). DCA indicat-
ed strong clinical utility across all models, with CAT and
SVM algorithms generating the highest net benefit across
threshold probabilities (Figure 3E).

Internal and external validation

All eight ML models underwent rigorous internal and
external validation analyses. As illustrated in Figure 4A
and Supplementary Table 6, the CAT model demonstrat-
ed superior discriminative performance in the internal
testing set, achieving an AUC of 0.901 (95% CI: 0.858-
0.943), alongside an accuracy of 0.840, recall of 0.753,
F1 score of 0.794, specificity of 0.900, and NPV of 0.840.
In the external validation set, the CAT model maintained
strong discriminative capabilities across various metrics
(Figure 4A and Supplementary Table 6), though a mar-
ginal reduction in AUC (0.916, 95% CI: 0.887-0.945)
was observed relative to the training set. When evaluated
using a predefined composite scoring system, the CAT
model attained the highest total scores of 62 and 57 in the
internal and external validation sets, respectively (Figure
4B), indicating its consistent superiority over comparator
algorithms. Calibration performance, assessed via calibra-
tion curves and Brier scores (Figure 5A and Supplemen-
tary Table 6), further underscored the CAT model’s relia-
bility, with predicted probabilities exhibiting close align-
ment to observed event rates in both internal and external
cohorts. DCA reinforced the clinical applicability of the
CAT model, revealing favorable net benefits across a
broad range of threshold probabilities in internal and ex-
ternal datasets (Figure 5B). Collectively, these findings
substantiated the CAT algorithm as the optimal model for
malnutrition risk stratification in hospitalized older adults
with CHF.

Feature importance and individual prediction

To elucidate the relationships between the top-performing
CAT model and the underlying data, we employed SHAP
to generate interpretable visualizations of feature contri-
butions to malnutrition risk probabilities. The SHAP
summary plot (Figure 6A) identified the most influential
risk factors in the CAT model, including BMI, CC, NY-
HA classification, age, and diabetes, ranked in descend-
ing order of importance. Notably, the feature importance
rankings exhibited consistency between internal and ex-
ternal validation cohorts (Supplementary Figure 2 and 3),
underscoring the model’s generalizability. Furthermore,
the SHAP beeswarm plot (Figure 6B) delineated individ-
ualized feature contributions to the model’s risk stratifica-
tion, where positive SHAP values (depicted in black) cor-
responded to an elevated probability of malnutrition risk,
whereas negative values (depicted in grey) were associat-
ed with reduced risk. This bidirectional influence high-
lights the nuanced interplay of variables in shaping pa-
tient-specific predictions.

To enhance model interpretability and visualize indi-
vidualized risk profiles, SHAP waterfall plots were con-
structed for representative true-positive (Figure 6C) and
true-negative cases (Figure 6D). Arrow directions repre-
sented the magnitude and directionality of each risk fac-
tor’s influence on malnutrition risk, with black hues
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Table 1. Baseline characteristics of the participants

Parameters Total Malnutrition Non-malnutrition Statistics p value
(n=790) (n=348) (n=442)
Age 74.0 [67.0, 80.0] 76.00 [70.3, 81.0] 71.00 [65.0, 79.0] -6.41 <0.001***
Gender
Men 346 (43.8%) 157 (45.1%) 189 (42.8%) 0.439 0.508
Women 444 (56.2%) 191 (54.9%) 253 (57.2%)
Residence
Rural (%) 349 (44.2%) 152 (43.7%) 197 (44.6%) 0.063 0.802
Urban (%) 441 (55.8%) 196 (56.3%) 245 (55.4%)
Education level
< high school 518 (65.6%) 228 (65.5%) 290 (65.6%) 0.001 0.978
>high school 272 (34.4%) 120 (34.5%) 152 (34.4%)
Monthly household income (Yuan)
<3000 353 (44.7%) 163 (46.8%) 190 (43.0%) 1.21 0.547
3000-5000 293 (37.1%) 125 (35.9%) 168 (38.0%)
>5000 144 (18.2%) 60 (17.2%) 84 (19.0%)
BMI (kg/m?) 24.2 [20.6, 27.4] 22.6[18.1, 27.0] 24.9[22.3,27.8] -7.54 <0.001***
Current smoking (%) 298 (37.7%) 144 (41.4%) 154 (34.8%) 3.54 0.060
Current drinking (%) 294 (37.2%) 132 (37.9%) 162 (36.7%) 0.136 0.712
Disease duration (months)
<6 594 (75.2%) 261 (75.0%) 333 (75.3%) 0.012 0.913
>6 196 (24.8%) 87 (25.0%) 109 (24.7%)
NYHA classification
I 113 (14.3%) 22 (6.3%) 91 (20.6%) 66.5 <0.0071***
111 403 (51.0%) 157 (45.1%) 246 (55.7%)
v 274 (34.7%) 169 (48.6%) 105 (23.8%)
Teeth number
>20 321 (40.6%) 129 (37.1%) 192 (43.4%) 3.28 0.070
<20 469 (59.4%) 219 (62.9%) 250 (56.6%)
Living alone (%) 71 (9.0%) 38 (10.9%) 33 (7.5%) 2.84 0.092
Comorbidities
Peripheral edema (%) 459 (58.1%) 201 (57.8%) 258 (58.4%) 0.030 0.862
Hypertension (%) 511 (64.7%) 223 (64.1%) 288 (65.2%) 0.099 0.753
Dyslipidemia (%) 366 (46.3%) 164 (47.1%) 202 (45.7%) 0.159 0.690

BMI, Body Mass Index; NYHA, New York Heart Association; COPD, Chronic Obstructive Pulmonary Disease; CHD, Coronary Heart Disease; CKD, Chronic Kidney Disease; MRA, Mineralocorticoid Receptor
Antagonist; ACEI/ARB, Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker; TP, Total Protein; HGB, Hemoglobin; Cr, Creatinine; Hs-CRP, High-sensitivity C-Reactive Protein; Na, Sodi-
um; K, Potassium; FBG, Fasting Blood Glucose; NT-proBNP, N-Terminal pro B-type Natriuretic Peptide; WBC, White Blood Cell; Alb, Albumin; Neu, Neutrophil; Lym, Lymphocyte; PLT, Platelet; Mon, Mono-
cyte; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutritional Index.

Continuous values are presented as median [IQR] and category values are presented as frequency (%).

**p <0.01, ***p < 0.001.
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Table 1. Baseline characteristics of the participants (n = 790)

Parameters Total Malnutrition Non-malnutrition Statistics p value
(n=790) (n =348) (n=442)
Comorbidities
COPD (%) 156 (19.7%) 73 (21.0%) 83 (18.8%) 0.594 0.441
CHD (%) 479 (60.6%) 213 (61.2%) 266 (60.2%) 0.086 0.770
Atrial fibrillation (%) 272 (34.4%) 125 (35.9%) 147 (33.3%) 0.611 0.434
Valvular heart disease (%) 211 (26.7%) 90 (25.9%) 121 (27.4%) 0.228 0.633
Diabetes (%) 227 (28.7%) 147 (42.2%) 80 (18.1%) 55.4 <0.001***
Anemia (%) 358 (45.3%) 167 (48.0%) 191 (43.2%) 1.79 0.181
CKD (%) 281 (35.6%) 135 (38.8%) 146 (33.0%) 2.82 0.093
Gastrointestinal disease (%) 301 (38.1%) 160 (46.0%) 141 (31.9%) 16.4 <0.001***
Functional capacity
Hand grasp (kg) 17.0 [13.0, 21.0] 17.0 [14.0, 21.0] 18.0[13.0, 22.0] -0.801 0.423
Upper arm circumference (cm) 24.0[20.0, 30.0] 25.0[20.0, 30.0] 24.0 [19.0, 29.0] -1.75 0.081
Calf circumference (cm) 34.0[31.0, 37.0] 33.0[30.0, 36.0] 35.0[32.0, 37.0] -6.76 <0.0071***
Medication
Diuretics (%) 536 (67.8%) 233 (67.0%) 303 (68.6%) 0.228 0.633
MRA (%) 678 (85.8%) 302 (86.8%) 376 (85.1%) 0.470 0.493
B-blocker (%) 438 (55.4%) 188 (54.0%) 250 (56.6%) 0.508 0.476
ACEI/ARB (%) 587 (74.3%) 261 (75.0%) 326 (73.8%) 0.158 0.691
Medical number (=5) 306 (38.7%) 169 (48.6%) 137 (31.0%) 253 <0.0071***
Laboratory tests
TP (g/L) 54.0 [46.0, 63.0] 53.5[46.0, 63.0] 54.0 [46.0, 63.0] -0.331 0.740
HGB (g/L) 133 [121, 147] 134 [123, 147] 132 120, 148] -0.810 0.418
Cr (mg/dL) 1.50[1.10, 1.90] 1.50 [1.10, 1.90] 1.50[1.10, 1.80] -1.12 0.264
Hs-CRP (<0.5mg/L) 503 (63.7%) 251 (72.1%) 252 (57.0%) 19.2 <0.0071***
Na (mmol/L) 135 [129, 141] 136 [130, 141] 135129, 141] -0.584 0.559
K (mmol/L) 4.10 [3.80, 4.50] 4.14 [3.80, 4.50] 4.10 [3.80, 4.50] -0.072 0.943
FBG (g/L) 5.30[4.70, 5.90] 5.30[4.70, 5.90] 5.30 [4.60, 5.93] -0.036 0.971
eGFR (ml/min/1.73m?) 70.0 [56.0, 87.0] 68.0 [55.3, 84.0] 72.0 [56.0, 88.0] -1.72 0.085
BNP (mg/L) 3721222, 491] 379 [244, 496] 351 [210, 484] -1.85 0.064
NT-proBNP (ng/L) 2989 [2032, 3938] 3059 [2096, 4077] 2950 [1974, 3852] -1.64 0.102
Alb (mg/L) 36.0 [28.0,41.0] 35.0[28.0, 40.0] 37.0[29.0, 42.0] -3.25 0.001**
WBC (10%L) 10.1 [8.38, 12.5] 10.0 [8.30, 12.6] 10.2 [8.40, 12.4] -0.005 0.996

BMI, Body Mass Index; NYHA, New York Heart Association; COPD, Chronic Obstructive Pulmonary Disease; CHD, Coronary Heart Disease; CKD, Chronic Kidney Disease; MRA, Mineralocorticoid Receptor
Antagonist; ACEI/ARB, Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker; TP, Total Protein; HGB, Hemoglobin; Cr, Creatinine; Hs-CRP, High-sensitivity C-Reactive Protein; Na, Sodi-
um; K, Potassium; FBG, Fasting Blood Glucose; NT-proBNP, N-Terminal pro B-type Natriuretic Peptide; WBC, White Blood Cell; Alb, Albumin; Neu, Neutrophil; Lym, Lymphocyte; PLT, Platelet; Mon, Mono-
cyte; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutritional Index.

Continuous values are presented as median [IQR] and category values are presented as frequency (%).

**p <0.01, ***p <0.001.
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Table 1. Baseline characteristics of the participants (cont.)

Parameters Total Malnutrition Non-malnutrition Statistics p value
(n=790) (n=348) (n=442)

Neu (10%L) 8.00 [6.00, 11.0] 9.00 [6.00, 11.8] 8.00 [5.00, 10.0] -2.85 0.004**
Lym (10°/L) 1.70 [1.40, 2.00] 1.60 [1.40, 1.90] 1.70 [1.30, 2.10] -1.31 0.189
PLT (10°/L) 190 [145, 246] 190 [145, 244] 190 [145, 247] -0.496 0.620
Mon (10°/L) 0.52[0.28, 0.73] 0.50[0.25, 0.72] 0.53[0.30, 0.73] -1.26 0.208
NLR 4.71 [3.16, 6.67] 5.00 [3.46, 6.87] 4.4412.94, 6.36] -3.06 0.002%*
PLR 111 [81.8, 155] 113 [85.2, 150] 108 [77.0, 156] -0.704 0.482
PNI 44.5 [38.0, 50.0] 44.0 [37.0, 48.5] 45.5[38.5, 51.0] -3.52 <0.001***

BMI, Body Mass Index; NYHA, New York Heart Association; COPD, Chronic Obstructive Pulmonary Disease; CHD, Coronary Heart Disease; CKD, Chronic Kidney Disease; MRA, Mineralocorticoid Receptor
Antagonist; ACEI/ARB, Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker; TP, Total Protein; HGB, Hemoglobin; Cr, Creatinine; Hs-CRP, High-sensitivity C-Reactive Protein; Na, Sodi-
um; K, Potassium; FBG, Fasting Blood Glucose; NT-proBNP, N-Terminal pro B-type Natriuretic Peptide; WBC, White Blood Cell; Alb, Albumin; Neu, Neutrophil; Lym, Lymphocyte; PLT, Platelet; Mon, Mono-
cyte; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutritional Index.

Continuous values are presented as median [IQR] and category values are presented as frequency (%).

**p <0.01, ¥**p <0.001.
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Figure 2. Variable selection using LASSO regression and multivariable regression analysis. (A) LASSO coefficient path plots illustrating
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nutrition identified through multivariable regression analysis

denoting risk-elevating factors and grey hues signifying
protective effects. The summation of individual risk fac-
tor contributions yielded the final SHAP value, which
quantifies the net deviation from the baseline value. For
instance, the representative true-positive case displayed a
high SHAP value (3.9), indicative of a pronounced mal-
nutrition risk, whereas the true-negative case exhibited a
strongly negative SHAP value (-1.94), reflecting robust
protective determinants.

To assess the generalizability of these findings, the
SHAP framework was extended to evaluate additional
ML models. As illustrated in Supplementary Figure 4,
BMI, CC, age, NYHA classification, and diabetes con-
sistently emerged as significant risk factors of malnutri-
tion across all the other models. This recurrent promi-
nence underscores their pivotal role in shaping risk strati-
fication outcomes, irrespective of the algorithmic ap-
proach employed.

DISCUSSION

Principal findings

Malnutrition in older adults with CHF is a multifactorial
condition driven by metabolic imbalances, reduced die-
tary intake, and systemic inflammation, contributing to
adverse outcomes such as prolonged hospitalization, post-
acute facility admission, and increased mortality.? De-

spite its clinical significance, timely identification of
high-risk patients remains challenging due to heterogene-
ous risk profiles and dynamic disease trajectories. Our
ML-based model was developed to address this gap by
providing a screening tool tailored for clinically actiona-
ble risk stratification. The model’s design emphasized
clinical interpretability and feasibility, with key risk fac-
tors—including BMI, CC, age, NYHA classification,
polypharmacy, hs-CRP, and PNI—consistent with estab-
lished biological pathways linking CHF and malnutrition.
These variables were rigorously validated through inter-
nal and external cohorts. Integration of this tool into EHR
systems could enable automated risk alerts during patient
admission, potentially prompting clinicians to prioritize
nutritional screening or initiate early interventions. While
preliminary findings suggest that the model may stream-
line risk stratification, further prospective studies are re-
quired to evaluate its impact on reducing diagnostic de-
lays or optimizing resource allocation in clinical practice.

Comparison with prior work

Our findings revealed a malnutrition prevalence of 44.1%
(348/790) among hospitalized older adults with CHF,
which was consistent with the previously reported range
of 6-60% in the literature.'! However, Hersberger et al.,
observed a universal malnutrition risk of 100% (n = 645)
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Figure 5. Calibration and clinical utility of the eight ML models in internal and external datasets. (A) Calibration curve evaluation.
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in CHF patients assessed using the NRS-2002 tool.>° This
disparity likely reflects differences in study populations,
diagnostic criteria (e.g., NRS-2002 vs. GLIM criteria),
and methodological heterogeneity in nutritional assess-
ment. Recent efforts to predict malnutrition in cardiac
populations have resulted in a variety of approaches. Shi
et al. developed an XGBoost model to predict post-
operative malnutrition in pediatric patients with congeni-
tal heart disease, achieving a superior AUC across all
outcomes.?! Similarly, Liu et al. constructed a nomogram
for early malnutrition risk stratification in HF patients;
however, its reliance on LR limited its adaptability to
non-linear relationships.> Tang et al. advanced this field
by integrating GLIM with LR model, demonstrating
strong discriminative power in older HF cohorts.>* While
these studies underscore the value of risk stratification
modeling, their scope remains limited to specific subpop-
ulations or conventional statistical methods. Our work
addressed a critical unmet need by introducing a ML-
based model specifically optimized for older adults with
CHF. Distinct from prior efforts, our methodology sys-
tematically evaluated eight ML algorithms, identifying
the CAT model as superior in balancing interpretability
and predictive accuracy. Rigorous hyperparameter tuning
and five-fold cross-validation mitigated overfitting risks,
while SHAP analysis elucidated clinically plausible risk
factors. Therefore, these findings suggest that ML-driven
tools, particularly the CAT framework, have the potential
to provide a clinically actionable strategy for early malnu-
trition identification. This approach may facilitate timely
and targeted nutritional interventions to mitigate down-
stream complications in this vulnerable population.

Risk factors for predicting malnutrition among older
CHF adults

The SHAP analysis conducted in this study identified
advanced age, lower BMI, reduced CC, severe cardiac
dysfunction (NYHA class III-IV), reduced PNI, increased
hs-CRP, diabetes, and polypharmacy (>5 medications) as
the most influential risk factors for malnutrition in older
adults with CHF. The association between advanced age
and malnutrition risk likely reflects the interplay of age-
related sarcopenia, diminished appetite, and metabolic
alterations exacerbated by the progression of CHF. Re-
duced skeletal muscle mass and fat reserves—evidenced
by lower BMI and CC—serve as critical biomarkers of
nutritional depletion, which were consistent with studies
demonstrating their values in malnutrition screening.3% 33
For example, an ML-based predictive model developed
by Wang et al substantiated that older adults with lower
BMI and CC are at an elevated risk of malnutrition.3
Furthermore, a nomogram model developed by Duan et
al. highlighted age and BMI as crucial predictors of mal-
nutrition among hospitalized cancer patients.’” Concur-
rently, severe cardiac dysfunction (NYHA class III-1V)
intensifies metabolic stress and energy demands, thereby
creating a persistent catabolic state that accelerates nutri-
tional depletion.’® This finding corroborated previous
evidence linking advanced functional class in congestive
HF patients to a higher prevalence of malnutrition.>* Ad-
ditionally, polypharmacy (=5 medications)—common in
the management of advanced CHF—was associated with

an increased risk of malnutrition, consistent with studies
linking polypharmacy and advanced cardiac disease to
nutritional ~deficiencies.* The adverse effects of
polypharmacy are multifaceted, encompassing drug-
nutrient interactions, gastrointestinal disturbances, and
appetite suppression, all of which contribute to the risk of
malnutrition.*!

Furthermore, the role of systemic inflammation in ex-
acerbating malnutrition risk was prominently highlighted
in our study. The ML-based model identified diabetes as
a significant risk factor for malnutrition, underscoring the
complex interplay between metabolic dysregulation and
nutritional deterioration in older adults with CHF. These
findings corroborate emerging evidence regarding the
synergistic mechanisms linking comorbidity burden,
chronic inflammation, and cardiac cachexia in this vul-
nerable population.*? In patients with concurrent diabetes
and CHF, persistent hyperglycemia, insulin resistance,
and chronic inflammation—evidenced by elevated hs-
CRP levels—are pivotal pathophysiological mechanisms
contributing to malnutrition. Hyperglycemia disrupts gas-
trointestinal motility and mucosal integrity, impairing the
bioavailability of essential nutrients, while insulin re-
sistance exacerbates skeletal muscle catabolism, further
depleting protein reserves.*> Compounding these effects,
stringent dietary restrictions—particularly carbohydrate
limitations imposed on diabetic patients—may inadvert-
ently precipitate micronutrient deficiencies and energy
deficits.** Notably, in our cohort, reduced PNI levels and
elevated hs-CRP levels—reflecting compromised nutri-
tional status and systemic inflammation—were associated
with accelerated muscle catabolism and anorexia, likely
mediated by cytokine-driven pathways.*>4° This observa-
tion aligns with recent studies demonstrating the utility of
hs-CRP and PNI as predictive biomarkers for malnutri-
tion in patients with chronic conditions.*” *® Our results
extend this paradigm to CHF, emphasizing that subclini-
cal nutritional and inflammatory biomarkers—often over-
looked in routine clinical assessments—may serve as ear-
ly indicators of nutritional decline.

Clinical implications

These findings of this study hold potential implications
for improving the management of hospitalized older pa-
tients with CHF. The SHAP analysis identified key risk
factors of malnutrition (e.g., BMI, CC, NYHA classifica-
tion), which may guide clinicians in systematically evalu-
ating high-risk patients and addressing the multifactorial
drivers of nutritional decline. Early recognition of these
factors could enable targeted interventions to mitigate
malnutrition risk, potentially improving clinical outcomes
such as reduced hospital readmission rates. For example,
incorporating routine assessments of anthropometric pa-
rameters (e.g., BMI, CC), cardiac function (NYHA class),
and inflammatory and nutritional biomarkers (hs-CRP,
PNI) at admission may facilitate timely risk stratification
and nutritional support. Furthermore, the integration of
this ML-based malnutrition risk stratification model with
established nutrition screening tools, such as MUST or
NRS-2002, could enhance clinical decision-making for
hospitalized older adults with CHF. This hybrid approach
may improve early risk detection, particularly in complex
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patients with overlapping comorbidities that confound
conventional assessments. While these strategies appear
promising for optimizing quality of life and long-term
outcomes, their clinical efficacy remains to be empirically
tested in real-world settings.

Limitations

This study has several limitations that warrant considera-
tion. First, the model was developed and validated using a
single-institute cohort, which may introduce selection
bias and limit generalizability to populations with diver-
gent demographics, clinical practices, or healthcare eco-
systems. Although external validation was performed, the
external cohort derived from a geographically adjacent
affiliated agency, potentially insufficient to capture
broader population heterogeneity. Multicenter studies
across diverse healthcare settings are needed to confirm
the model’s generalizability. Second, while the model
demonstrated accuracy for stratifying malnutrition risk at
admission, its cross-sectional design precludes insights
into dynamic changes in risk during hospitalization or
post-discharge. Factors such as treatment responses, die-
tary interventions, or new comorbidities acquired during
hospitalization—which may modulate malnutrition risk—
were not accounted for. Future longitudinal studies are
required to validate the model’s ability to predict evolv-
ing risk trajectories. Third, the dataset lacked granular
details on psychological status, dietary habits, and care-
giver support, all of which are established contributors to
malnutrition risk. Incorporating these variables in pro-
spective longitudinal studies could enhance risk stratifica-
tion accuracy. Fourth, although the CAT algorithm out-
performed other models in this study, its integration into
clinical workflows necessitates further validation in real-
world settings to assess usability and tangible impacts on
patient outcomes. Finally, the model’s potential to guid-
ing nutritional interventions and improve clinical out-
comes remains hypothetical. Randomized controlled trials
are required to empirically quantify its clinical utility in
patient management. Addressing these limitations will
strengthen the translational potential of this tool and sup-
port its integration into evidence-based clinical practice
for older adults with CHF.

Conclusion

This study developed and validated a ML-based model
for stratifying malnutrition risk in hospitalized older
adults with CHF. The CAT algorithm outperformed other
models regarding discrimination, calibration, and clinical
utility in both internal and external validations. By utiliz-
ing routinely collected clinical parameters—such as BMI,
NYHA class, and hs-CRP—this tool offers a clinically
feasible method for the early identification of high-risk
patients during admission. While the model’s screening
accuracy supports its potential utility in guiding nutrition-
al interventions, its efficacy in mitigating adverse out-
comes remains to be empirically validated. Future studies
should address existing limitations and explore the long-
term implications of the risk stratification model.
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