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Background and Objectives: Malnutrition among older hospitalized adults with chronic heart failure (CHF) is 

associated with adverse clinical outcomes, yet reliable early risk stratification tools remain lacking. This study 

aimed to develop and validate a machine learning (ML) model for malnutrition risk stratification in this popula-

tion. Methods and Study Design: Malnutrition among older hospitalized adults with chronic heart failure (CHF) 

is associated with adverse clinical outcomes, yet reliable early risk stratification tools remain lacking. This study 

aimed to develop and validate a machine learning (ML) model for malnutrition risk stratification in this popula-

tion. Results: Malnutrition prevalence was 44.1% (348/790). In the internal testing, CatBoost (CAT) achieved 

superior performance with an AUC of 0.901 (95% confidence interval [CI]: 0.858-0.943), accuracy of 0.840, re-

call of 0.753, and the lowest Brier score of 0.113. This model demonstrated strong calibration, clinical utility, and 

the highest composite score (62/64). External validation confirmed CAT’s generalizability (AUC: 0.916, 95% CI: 

0.887-0.945). SHAP analysis identified body mass index (BMI), calf circumference, New York Heart Association 

(NYHA) classification, age, and diabetes as significant contributors to malnutrition risk. Conclusions: The CAT-

based model effectively stratifies malnutrition risk in older hospitalized CHF patients, offering a tool for early in-

tervention to improve outcomes. Further multicenter prospective studies are needed to validate its real-world ap-

plicability. 
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INTRODUCTION 

Chronic heart failure (CHF) is a complex clinical syn-

drome characterized by structural and functional cardiac 

impairments that diminish the heart’s ability to pump 

blood effectively, leading to insufficient perfusion to sat-

isfy metabolic requirements.1 As a leading cause of hospi-

talization and disability in older adults, CHF presents 

significant challenges to healthcare systems worldwide.2 

Epidemiological data indicate that there are more than 26 

million cases globally, with escalating morbidity and 

mortality rates attributable to aging populations and the 

increasing prevalence of comorbidities.3, 4 The prognosis 

for CHF remains poor, with a five-year mortality rate of 

approximately 50% following diagnosis.5 Older adults are 

disproportionately susceptible to adverse outcomes asso-

ciated with CHF due to age-related physiological decline, 

multimorbidity, and reduced physiological reserve.6 

These pathophysiological processes not only heighten 

mortality risks but also compromise physical and psycho-

logical well-being, resulting in substantially reduced qual-

ity of life, frequent hospitalizations, and greater caregiver 

dependency.7 

From a metabolic perspective, adequate nutrition is 

crucial for preserving myocardial contractility and cardiac 

efficiency, acting as a protective mechanism against  

energy depletion in failing hearts.8 However, as CHF  

 

 

progresses, malnutrition disrupts this balance, leading to 

immune dysfunction, prolonged hospitalization, increased 

readmission rates, and heightened mortality risk.9 Clini-

cally, malnutrition presents across a spectrum, ranging 

from reduced appetite and weight loss to sarcopenia, se-

vere cardiac cachexia, chronic inflammation, and meta-

bolic derangements.10 Alarmingly, the prevalence of mal-

nutrition increases with disease severity, affecting up to 

90% of CHF patients. This increase is driven by factors 

such as aging, multiple comorbidities, and intestinal mal-

absorption.11 Hospitalization further exacerbates nutri-

tional decline, as patients face acute stressors, dietary 

inconsistencies, and physiological deterioration.12 Despite 

its significant impact on patient outcomes, malnutrition 

remains underdiagnosed due to its complex etiology and  
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the lack of robust screening methods. This highlights the 

need for innovative strategies to accurately predict malnu-

trition risk and enable early intervention, ultimately en-

hancing clinical care and patient quality of life.  

Machine learning (ML) provides a transformative ap-

proach to addressing complex clinical challenges through 

its capacity to analyze multidimensional datasets, identify 

subtle predictive patterns, and generate individualized 

risk assessments.13 In healthcare, ML has emerged as a 

powerful tool for prognostication in HF, demonstrating 

efficacy in predicting mortality, readmissions, and thera-

peutic strategy optimization.14 For example, ML models 

have been employed to predict three-year all-cause mor-

tality in HF patients using echocardiographic pheno-

types15 and to assess the in-hospital prognosis of acute HF 

patients through electronic health record (EHR) data.16 

These studies underscore ML’s ability to detect nuanced 

associations that may not be apparent with conventional 

statistical methods. Despite these advancements, the ap-

plication of ML to address malnutrition—a critical yet 

often underrecognized comorbidity in older adults with 

CHF—remains underexplored. Current screening tools 

(e.g., MUST, COUNT) exhibit limitations due to their 

insufficient specificity for HF pathophysiology and fail-

ure to incorporate disease-specific factors.17, 18 This gap 

highlights the potential for ML-based approaches to im-

prove the accuracy of nutritional risk assessments by in-

tegrating real-time clinical, nutritional, and biomarker 

data. 

Therefore, this study aims to construct and validate an 

ML-based model for identifying and stratifying the risk of 

malnutrition in hospitalized older adults with CHF. By 

leveraging comprehensive clinical data, we developed 

and rigorously validated a screening model designed to 

assist healthcare professionals in identifying patients at 

increased risk of malnutrition. While further prospective 

studies are needed to confirm clinical utility, this model 

represents a preliminary tool that may support early risk 

stratification, enabling clinicians to consider tailored nu-

tritional interventions as part of broader patient manage-

ment strategies. 

 

METHODS 

Study design and patients 

In this prospective study, data were collected from 1,128 

older adults diagnosed with CHF at two medical centers 

(Heping and Hunnan) affiliated with the First Affiliated 

Hospital of China Medical University between January 

2021 and December 2024. The model development co-

hort, consisting of participants enrolled at Heping Medi-

cal Center from January 2021 to June 2023, was random-

ly divided into a training set and an internal testing set at 

a 7:3 ratio. Participants recruited from Hunnan Medical 

Center between July 2023 and December 2024 constitut-

ed the external validation set. This study received approv-

al from the Ethics Committee of the First Affiliated Hos-

pital of China Medical University (Ethical Approval No. 

EC-2021-187-2) and was conducted in accordance with 

the principles of the Declaration of Helsinki. Written in-

formed consent was obtained from all participants prior to 

the study.  

Inclusion criteria were as follows: (1) age ≥ 60 years; 

(2) confirmed diagnosis of CHF according to the estab-

lished guidelines;1 (3) New York Heart Association 

(NYHA) functional class II-IV with clinical stability; (4) 

conscious and able to provide written informed consent; 

(5) incomplete data <10%. Exclusion criteria included: 

(1) newly diagnosed acute heart failure (HF) during hos-

pitalization (e.g., acute myocardial infarction) or specific 

cardiac conditions (e.g., congenital heart disease, hyper-

thyroid heart disease, or cardiac transplantation); (2) 

comorbidities associated with increased short-term mor-

tality risk or severe organ dysfunction (e.g., life-

threatening thromboembolic events, severe infection, ac-

tive malignancies, acute pancreatitis, hepatic/renal failure, 

or uncontrolled hyperthyroidism); (3) history of gastric 

bypass surgery, inability to tolerate oral intake, or diag-

nosed anorexia nervosa; (4) receipt of ongoing long-term 

nutritional support at admission; (5) cognitive impairment 

or psychiatric disorders; (6) treatment in intensive care or 

surgical units. Following comprehensive screening, 1,128 

patients met the eligibility requirements and were en-

rolled in this study. The participant selection workflow is 

illustrated in Figure 1. 

 

Data collection 

Clinical data from all participants were prospectively col-

lected and categorized as follows: (1) Demographic vari-

ables: age, gender (men/women), residence (rural/urban), 

education level (below high school or above), monthly 

household income (yuan), body mass index (BMI, 

kg/m2), living arrangement (living alone or not), dentition 

status (number of natural teeth), current smoking status, 

and alcohol consumption. (2) Functional capacity: hand-

grasp strength (kg), mid-upper arm circumference (cm), 

and calf circumference (CC, cm). (3) Clinical data: CHF 

duration (months), NYHA classification (II-IV), comor-

bidities (peripheral edema, hypertension, dyslipidemia, 

diabetes, chronic obstructive pulmonary disease [COPD], 

coronary heart disease [CHD], atrial fibrillation, valvular 

heart disease, anemia, chronic kidney disease [CKD], and 

gastrointestinal disease), and medication usage (diuretics, 

mineralocorticoid receptor antagonist [MRA], angioten-

sin-converting enzyme inhibitors/angiotensin II receptor 

blockers [ACE-I/ARB], β-blockers, and total number of 

prescribed medications). (4) Laboratory parameters as-

sessed within 24 h of hospitalization included: total pro-

tein (TP, g/L), hemoglobin (HGB, g/L), creatinine (Cr, 

mg/dL), sodium (Na, mmol/L), potassium (K, mmol/L), 

fasting blood glucose (FBG, g/L), estimated glomerular 

filtration rate (eGFR, mL/min/1.73m²), B-type natriuretic 

peptide (BNP, mg/L), N-terminal pro-B-type natriuretic 

peptide (NT-proBNP, ng/L), white blood cell count 

(WBC, 10⁹/L), albumin (Alb, mg/L), neutrophils (Neu, 

10⁹/L), lymphocytes (Lym, 10⁹/L), platelets (PLT, 10⁹/L), 

monocytes (Mon, 10⁹/L), neutrophil-to-lymphocyte ratio 

(NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-

to-monocyte ratio (LMR), and prognostic nutritional in-

dex (PNI). 
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Diagnostic criteria of malnutrition 

Malnutrition was diagnosed according to the Global 

Leadership Initiative on Malnutrition (GLIM) consensus 

framework,19 employing a validated two-step approach 

specifically designed for older adults with CHF. All par-

ticipants underwent a systematic nutritional evaluation 

within 24 h of hospitalization. The Nutritional Risk 

Screening 2002 (NRS-2002) tool was utilized to identify 

individuals at nutritional risk.20 Patients with an NRS-

2002 score ≥3 underwent a confirmatory evaluation for 

malnutrition, which required meeting at least one pheno-

typic criterion and one etiological criterion in accordance 

with GLIM guidelines. Phenotypic criteria included: 

weight loss >5% within six months or >10% beyond six 

 
 

Figure 1. Flowchart of the participant enrolment and study design.  
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months; BMI <18.5 kg/m2 for individuals aged ≤70 years 

or <20 kg/m2 for those >70 years; and reduced muscle 

mass, assessed via CC measurements (≤30 cm for men; 

≤29.5 cm for women).21 Etiological criteria included 

chronic inflammation, disease burden, reduced food in-

take, or impaired nutrient assimilation. In this cohort, all 

participants inherently satisfied the disease burden crite-

rion owing to their CHF diagnosis. 

 

Data processing and feature selection 

Variables with >10% missing values were excluded to 

avoid unreliable imputation. Remaining missing values 

were imputed using MissForest, a non-parametric random 

forest-based algorithm, selected for its ability to model 

complex interactions in clinical data.22 Missing data pat-

terns in the model development cohort before and after 

imputation are compared in Supplementary Figure 1. The 

dataset was split into training (70%) and internal testing 

(30%) sets using stratified random sampling to preserve 

outcome distribution. Categorical variables were convert-

ed into factors with clinically meaningful labels to ensure 

proper handling in downstream analyses. Continuous fea-

tures were standardized to zero mean and unit variance 

using preproc_pipeline.fit_transform, ensuring the trans-

formation pipeline was fitted exclusively on the training 

set to prevent leakage. 

In this study, feature selection was conducted using the 

Least Absolute Shrinkage and Selection Operator (LAS-

SO) regression with an L1 penalty, followed by multivar-

iable logistic regression. LASSO regression identified 

risk factors with non-zero coefficients, thereby optimizing 

model generalizability. The optimal regularization pa-

rameter (λ) was selected via ten-fold cross-validation us-

ing the 1-standard-error rule (λ-1se). This approach bal-

ances feature sparsity and predictive performance by se-

lecting the largest λ value within one standard error of the 

minimum cross-validated mean squared error (MSE). 

This criterion prioritizes model simplicity to mitigate 

overfitting risks.23 Variables retained by LASSO were 

subsequently incorporated into the multivariable logistic 

regression model, with coefficients estimated using max-

imum likelihood.  

 

Modeling 

This study employed a comprehensive range of ML algo-

rithms to ensure robust analytical outcomes. The imple-

mented models included Logistic Regression (LR), Neu-

ral Network (NNet), Support Vector Machine (SVM), 

Naïve Bayes (NB), Random Forest (RF), Extreme Gradi-

ent Boosting (XGB), Light Gradient Boosting Machine 

(LGBM), and CATBoost (CAT). Detailed descriptions of 

these algorithms, including their theoretical underpin-

nings, are provided in Supplementary Table 1. All eight 

models were trained using identical input features to en-

sure methodological consistency. Hyperparameter opti-

mization was conducted using grid search and random-

ized search strategies, integrated with five-fold cross-

validation on the training dataset. This approach facilitat-

ed the systematic identification of optimal hyperparame-

ter configurations for each model, with the area under the 

receiver operating characteristic curve (AUC-ROC) serv-

ing as the primary optimization metric. Detailed hyperpa-

rameter tuning results are presented in Supplementary 

Table 2. The incorporation of cross-validation enhanced 

model robustness, mitigated the risk of overfitting, and 

improved the generalizability of predictive performance 

across heterogeneous datasets. 

 

Validation 

Model performance was rigorously validated using a 

combination of quantitative metrics and graphical anal-

yses. Eight evaluation metrics were calculated: AUC, 

accuracy, precision, recall, specificity, negative predictive 

value (NPV), F1 score, and Brier score.24, 25 Graphical 

assessments included calibration curves to evaluate the 

agreement between predicted probabilities and observed 

outcomes and decision curve analysis (DCA) to assess 

clinical net benefit across probability thresholds. Addi-

tionally, a composite scoring system adapted from estab-

lished methodologies was developed to provide a holistic 

ranking of model performance.24, 26 This system integrat-

ed all eight metrics, assigning equal weights to each, to 

generate a cumulative score on a 0-64 scale, where higher 

scores indicate superior predictive performance.  

 

Model explainability 

Interpretability is essential in clinical ML to ensure model 

trustworthiness and provide clinically actionable insights. 

In this study, Shapley Additive exPlanations (SHAP), a 

game theory-based framework, was employed to eluci-

date the decision logic of the final model.27 SHAP quanti-

fies individual feature contributions to predictions by cal-

culating Shapley values, which reflect the marginal im-

pact of each feature relative to baseline expectations. 

These values enable dual interpretability: global inter-

pretability that aggregates feature importance across the 

dataset and local interpretability that attributes feature-

level contributions to individual predictions, thereby rec-

onciling the complexity of “black-box” models with cli-

nician-friendly explanations. To enhance transparency, 

SHAP-derived insights were visualized through summary 

plots, force plots, and waterfall plots. These visual tools 

support rigorous model auditing and facilitate the transla-

tion of predictions into context-specific clinical interven-

tions. 

 

Statistical analysis 

All statistical analyses were performed using SPSS soft-

ware (version 27.0, IBM Corp.) and R software (version 

4.4.1, Foundation for Statistical Computing). Continuous 

variables, which were assessed for non-normal distribu-

tion, were reported as median with interquartile range 

(IQR). Categorical variables were presented as frequen-

cies and proportions (%). Group differences in categorical 

variables were evaluated using the chi-square test, while 

non-parametric Wilcoxon rank-sum tests were applied to 

continuous variables. Potential risk variables were quanti-

fied as odds ratios (ORs) with corresponding 95% confi-

dence intervals (CIs). A p-value (two-tailed) < 0.05, after 

adjustment for multiple comparisons using false discov-

ery rate (FDR), was considered statistically significant.28 
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RESULTS 

Patient’s baseline characteristics 

The model development cohort consisted of 790 hospital-

ized older CHF patients, with a median age of 74.0 years 

[IQR: 67.0, 80.0]. Among these participants, 56.2% 

(444/790) were women, and 85.7% (677/790) exhibited 

severe functional impairment (NYHA class III/IV). Mal-

nutrition was identified in 44.1% of the cohort (348/790), 

whereas the remaining 55.9% (442/790) maintained a 

normal nutritional status. Comparative baseline character-

istics between the malnutrition and non-malnutrition 

groups were detailed in Table 1. For model development, 

the cohort was divided into a training subset (n = 553, 

70%) and an internal testing subset (n = 237, 30%), with 

malnutrition prevalence rates of 45.4% (n = 251) and 

40.9% (n = 97), respectively. As shown in Table S3, the 

baseline characteristics between the training and internal 

testing cohorts showed no statistically significant differ-

ences (all p > 0.05). 

External validation was conducted using an independ-

ent cohort consisting of 338 hospitalized older CHF 

adults. The prevalence of malnutrition in this validation 

cohort was 40.5% (137/338), closely aligning with the 

prevalence observed in the model development cohort 

(44.1%). Baseline clinical characteristics of both the de-

velopment and external validation cohorts were compared 

and presented in Supplementary Table 4. 

 

Variable selection via LASSO regression 

We employed LASSO regression with an L1 penalty term 

to optimize feature selection by shrinking the coefficients 

of redundant predictors to zero (Figure 2A). The optimal 

regularization parameter (λ = 0.043) was selected via ten-

fold cross-validation using the λ-1se method (dashed blue 

vertical line), effectively balancing predictive accuracy 

with model complexity reduction (Figure 2B). This ap-

proach yielded eight robust risk factors: age, BMI, CC, 

diabetes, hs-CRP, polypharmacy (≥ 5 medications), NY-

HA classification, and PNI (Figure 2C). These variables 

were subsequently analyzed using multivariable logistic 

regression, which confirmed significant associations with 

malnutrition risk (all p < 0.05; Figure 2D). Following 

correction for the FDR, all eight risk variables retained 

statistical significance (Supplementary Table 5). Conse-

quently, these variables were selected for final model 

construction. 

 

Modeling and performance evaluation 

The model development process utilized a grid search 

strategy for hyperparameter optimization, in which con-

figurations were systematically selected to maximize 

ROC-AUC performance. In the training set, the CAT 

algorithms achieved superior discriminative performance 

(AUC = 0.947, 95% CI: 0.930-0.964), followed by RF 

(AUC = 0.914, 95% CI: 0.891-0.937) and XGB (AUC = 

0.911, 95% CI: 0.888-0.935) (Figure 3A and 3B, Sup-

plementary Table 6). Furthermore, the CAT model exhib-

ited robust performance across various metrics, achieving 

the highest composite score (63/64) in a multidimensional 

assessment framework (Figure 3C). Calibration analysis 

demonstrated favorable alignment of the CAT model’s 

predicted probabilities with observed outcomes, as evi-

denced by its proximity to the ideal calibration curve and 

the lowest Brier score (0.099) (Figure 3D). DCA indicat-

ed strong clinical utility across all models, with CAT and 

SVM algorithms generating the highest net benefit across 

threshold probabilities (Figure 3E). 

 

Internal and external validation 

All eight ML models underwent rigorous internal and 

external validation analyses. As illustrated in Figure 4A 

and Supplementary Table 6, the CAT model demonstrat-

ed superior discriminative performance in the internal 

testing set, achieving an AUC of 0.901 (95% CI: 0.858-

0.943), alongside an accuracy of 0.840, recall of 0.753, 

F1 score of 0.794, specificity of 0.900, and NPV of 0.840. 

In the external validation set, the CAT model maintained 

strong discriminative capabilities across various metrics 

(Figure 4A and Supplementary Table 6), though a mar-

ginal reduction in AUC (0.916, 95% CI: 0.887-0.945) 

was observed relative to the training set. When evaluated 

using a predefined composite scoring system, the CAT 

model attained the highest total scores of 62 and 57 in the 

internal and external validation sets, respectively (Figure 

4B), indicating its consistent superiority over comparator 

algorithms. Calibration performance, assessed via calibra-

tion curves and Brier scores (Figure 5A and Supplemen-

tary Table 6), further underscored the CAT model’s relia-

bility, with predicted probabilities exhibiting close align-

ment to observed event rates in both internal and external 

cohorts. DCA reinforced the clinical applicability of the 

CAT model, revealing favorable net benefits across a 

broad range of threshold probabilities in internal and ex-

ternal datasets (Figure 5B). Collectively, these findings 

substantiated the CAT algorithm as the optimal model for 

malnutrition risk stratification in hospitalized older adults 

with CHF. 

 

Feature importance and individual prediction 

To elucidate the relationships between the top-performing 

CAT model and the underlying data, we employed SHAP 

to generate interpretable visualizations of feature contri-

butions to malnutrition risk probabilities. The SHAP 

summary plot (Figure 6A) identified the most influential 

risk factors in the CAT model, including BMI, CC, NY-

HA classification, age, and diabetes, ranked in descend-

ing order of importance. Notably, the feature importance 

rankings exhibited consistency between internal and ex-

ternal validation cohorts (Supplementary Figure 2 and 3), 

underscoring the model’s generalizability. Furthermore, 

the SHAP beeswarm plot (Figure 6B) delineated individ-

ualized feature contributions to the model’s risk stratifica-

tion, where positive SHAP values (depicted in black) cor-

responded to an elevated probability of malnutrition risk, 

whereas negative values (depicted in grey) were associat-

ed with reduced risk. This bidirectional influence high-

lights the nuanced interplay of variables in shaping pa-

tient-specific predictions.  

To enhance model interpretability and visualize indi-

vidualized risk profiles, SHAP waterfall plots were con-

structed for representative true-positive (Figure 6C) and 

true-negative cases (Figure 6D). Arrow directions repre-

sented the magnitude and directionality of each risk fac-

tor’s influence on malnutrition risk, with black hues
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Table 1. Baseline characteristics of the participants 
 

Parameters Total 

(n = 790) 

Malnutrition 

(n = 348) 

Non-malnutrition 

(n = 442) 

Statistics p value 

Age 74.0 [67.0, 80.0] 76.00 [70.3, 81.0] 71.00 [65.0, 79.0] -6.41 <0.001*** 

Gender      

 Men 346 (43.8%) 157 (45.1%) 189 (42.8%) 0.439 0.508 

 Women 444 (56.2%) 191 (54.9%) 253 (57.2%)   

Residence      

 Rural (%) 349 (44.2%) 152 (43.7%) 197 (44.6%) 0.063 0.802 

 Urban (%) 441 (55.8%) 196 (56.3%) 245 (55.4%)   

Education level      

 < high school 518 (65.6%) 228 (65.5%) 290 (65.6%) 0.001 0.978 

 ≥high school 272 (34.4%) 120 (34.5%) 152 (34.4%)   

Monthly household income (Yuan)      

 <3000  353 (44.7%) 163 (46.8%) 190 (43.0%) 1.21 0.547 

 3000-5000 293 (37.1%) 125 (35.9%) 168 (38.0%)   

 >5000 144 (18.2%) 60 (17.2%) 84 (19.0%)   

BMI (kg/m2) 24.2 [20.6, 27.4] 22.6 [18.1, 27.0] 24.9 [22.3, 27.8] -7.54 <0.001*** 

Current smoking (%) 298 (37.7%) 144 (41.4%) 154 (34.8%) 3.54 0.060 

Current drinking (%) 294 (37.2%) 132 (37.9%) 162 (36.7%) 0.136 0.712 

Disease duration (months)      

 ≤6 594 (75.2%) 261 (75.0%) 333 (75.3%) 0.012 0.913 

 >6 196 (24.8%) 87 (25.0%) 109 (24.7%)   

NYHA classification      

 II 113 (14.3%) 22 (6.3%) 91 (20.6%) 66.5 <0.001*** 

 III 403 (51.0%) 157 (45.1%) 246 (55.7%)   

 IV 274 (34.7%) 169 (48.6%) 105 (23.8%)   

Teeth number      

 ≥20 321 (40.6%) 129 (37.1%) 192 (43.4%) 3.28 0.070 

 <20 469 (59.4%) 219 (62.9%) 250 (56.6%)   

Living alone (%) 71 (9.0%) 38 (10.9%) 33 (7.5%) 2.84 0.092 

Comorbidities      

 Peripheral edema (%) 459 (58.1%) 201 (57.8%) 258 (58.4%) 0.030 0.862 

 Hypertension (%) 511 (64.7%) 223 (64.1%) 288 (65.2%) 0.099 0.753 

 Dyslipidemia (%) 366 (46.3%) 164 (47.1%) 202 (45.7%) 0.159 0.690 
 

BMI, Body Mass Index; NYHA, New York Heart Association; COPD, Chronic Obstructive Pulmonary Disease; CHD, Coronary Heart Disease; CKD, Chronic Kidney Disease; MRA, Mineralocorticoid Receptor 

Antagonist; ACEI/ARB, Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker; TP, Total Protein; HGB, Hemoglobin; Cr, Creatinine; Hs-CRP, High-sensitivity C-Reactive Protein; Na, Sodi-

um; K, Potassium; FBG, Fasting Blood Glucose; NT-proBNP, N-Terminal pro B-type Natriuretic Peptide; WBC, White Blood Cell; Alb, Albumin; Neu, Neutrophil; Lym, Lymphocyte; PLT, Platelet; Mon, Mono-

cyte; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutritional Index. 

Continuous values are presented as median [IQR] and category values are presented as frequency (%). 
**p < 0.01, ***p < 0.001.   
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Table 1. Baseline characteristics of the participants (n = 790) 
 

Parameters Total 

(n = 790) 

Malnutrition 

(n = 348) 

Non-malnutrition 

(n = 442) 

Statistics p value 

Comorbidities      

 COPD (%) 156 (19.7%) 73 (21.0%) 83 (18.8%) 0.594 0.441 

 CHD (%) 479 (60.6%) 213 (61.2%) 266 (60.2%) 0.086 0.770 

 Atrial fibrillation (%) 272 (34.4%) 125 (35.9%) 147 (33.3%) 0.611 0.434 

 Valvular heart disease (%) 211 (26.7%) 90 (25.9%) 121 (27.4%) 0.228 0.633 

 Diabetes (%) 227 (28.7%) 147 (42.2%) 80 (18.1%) 55.4 <0.001*** 

 Anemia (%) 358 (45.3%) 167 (48.0%) 191 (43.2%) 1.79 0.181 

 CKD (%) 281 (35.6%) 135 (38.8%) 146 (33.0%) 2.82 0.093 

 Gastrointestinal disease (%) 301 (38.1%) 160 (46.0%) 141 (31.9%) 16.4 <0.001*** 

Functional capacity      

 Hand grasp (kg) 17.0 [13.0, 21.0] 17.0 [14.0, 21.0] 18.0 [13.0, 22.0] -0.801 0.423 

 Upper arm circumference (cm) 24.0 [20.0, 30.0] 25.0 [20.0, 30.0] 24.0 [19.0, 29.0] -1.75 0.081 

 Calf circumference (cm) 34.0 [31.0, 37.0] 33.0 [30.0, 36.0] 35.0 [32.0, 37.0] -6.76 <0.001*** 

Medication       

 Diuretics (%) 536 (67.8%) 233 (67.0%) 303 (68.6%) 0.228 0.633 

 MRA (%) 678 (85.8%) 302 (86.8%) 376 (85.1%) 0.470 0.493 

 β‐blocker (%) 438 (55.4%) 188 (54.0%) 250 (56.6%) 0.508 0.476 

 ACEI/ARB (%) 587 (74.3%) 261 (75.0%) 326 (73.8%) 0.158 0.691 

 Medical number (≥5) 306 (38.7%) 169 (48.6%) 137 (31.0%) 25.3 <0.001*** 

Laboratory tests      

 TP (g/L) 54.0 [46.0, 63.0] 53.5 [46.0, 63.0] 54.0 [46.0, 63.0] -0.331 0.740 

 HGB (g/L) 133 [121, 147] 134 [123, 147] 132 [120, 148] -0.810 0.418 

 Cr (mg/dL) 1.50 [1.10, 1.90] 1.50 [1.10, 1.90] 1.50 [1.10, 1.80] -1.12 0.264 

 Hs-CRP (<0.5mg/L) 503 (63.7%) 251 (72.1%) 252 (57.0%) 19.2 <0.001*** 

 Na (mmol/L) 135 [129, 141] 136 [130, 141] 135 [129, 141] -0.584 0.559 

 K (mmol/L) 4.10 [3.80, 4.50] 4.14 [3.80, 4.50] 4.10 [3.80, 4.50] -0.072 0.943 

 FBG (g/L) 5.30 [4.70, 5.90] 5.30 [4.70, 5.90] 5.30 [4.60, 5.93] -0.036 0.971 

 eGFR (ml/min/1.73m2) 70.0 [56.0, 87.0] 68.0 [55.3, 84.0] 72.0 [56.0, 88.0] -1.72 0.085 

 BNP (mg/L) 372 [222, 491] 379 [244, 496] 351 [210, 484] -1.85 0.064 

 NT-proBNP (ng/L) 2989 [2032, 3938] 3059 [2096, 4077] 2950 [1974, 3852] -1.64 0.102 

 Alb (mg/L) 36.0 [28.0, 41.0] 35.0 [28.0, 40.0] 37.0 [29.0, 42.0] -3.25 0.001** 

 WBC (109/L) 10.1 [8.38, 12.5] 10.0 [8.30, 12.6] 10.2 [8.40, 12.4] -0.005 0.996 
 

BMI, Body Mass Index; NYHA, New York Heart Association; COPD, Chronic Obstructive Pulmonary Disease; CHD, Coronary Heart Disease; CKD, Chronic Kidney Disease; MRA, Mineralocorticoid Receptor 

Antagonist; ACEI/ARB, Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker; TP, Total Protein; HGB, Hemoglobin; Cr, Creatinine; Hs-CRP, High-sensitivity C-Reactive Protein; Na, Sodi-

um; K, Potassium; FBG, Fasting Blood Glucose; NT-proBNP, N-Terminal pro B-type Natriuretic Peptide; WBC, White Blood Cell; Alb, Albumin; Neu, Neutrophil; Lym, Lymphocyte; PLT, Platelet; Mon, Mono-

cyte; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutritional Index. 

Continuous values are presented as median [IQR] and category values are presented as frequency (%). 
**p < 0.01, ***p < 0.001.  
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Table 1. Baseline characteristics of the participants (cont.) 
 

Parameters Total 

(n = 790) 

Malnutrition 

(n = 348) 

Non-malnutrition 

(n = 442) 

Statistics p value 

 Neu (109/L) 8.00 [6.00, 11.0] 9.00 [6.00, 11.8] 8.00 [5.00, 10.0] -2.85 0.004** 

 Lym (109/L) 1.70 [1.40, 2.00] 1.60 [1.40, 1.90] 1.70 [1.30, 2.10] -1.31 0.189 

 PLT (109/L) 190 [145, 246] 190 [145, 244] 190 [145, 247] -0.496 0.620 

 Mon (109/L) 0.52 [0.28, 0.73] 0.50 [0.25, 0.72] 0.53 [0.30, 0.73] -1.26 0.208 

 NLR  4.71 [3.16, 6.67] 5.00 [3.46, 6.87] 4.44 [2.94, 6.36] -3.06 0.002** 

 PLR 111 [81.8, 155] 113 [85.2, 150] 108 [77.0, 156] -0.704 0.482 

 PNI 44.5 [38.0, 50.0] 44.0 [37.0, 48.5] 45.5 [38.5, 51.0] -3.52 <0.001*** 
 

BMI, Body Mass Index; NYHA, New York Heart Association; COPD, Chronic Obstructive Pulmonary Disease; CHD, Coronary Heart Disease; CKD, Chronic Kidney Disease; MRA, Mineralocorticoid Receptor 

Antagonist; ACEI/ARB, Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker; TP, Total Protein; HGB, Hemoglobin; Cr, Creatinine; Hs-CRP, High-sensitivity C-Reactive Protein; Na, Sodi-

um; K, Potassium; FBG, Fasting Blood Glucose; NT-proBNP, N-Terminal pro B-type Natriuretic Peptide; WBC, White Blood Cell; Alb, Albumin; Neu, Neutrophil; Lym, Lymphocyte; PLT, Platelet; Mon, Mono-

cyte; NLR, Neutrophil-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; PNI, Prognostic Nutritional Index. 

Continuous values are presented as median [IQR] and category values are presented as frequency (%). 
**p < 0.01, ***p < 0.001.  
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denoting risk-elevating factors and grey hues signifying 

protective effects. The summation of individual risk fac-

tor contributions yielded the final SHAP value, which 

quantifies the net deviation from the baseline value. For 

instance, the representative true-positive case displayed a 

high SHAP value (3.9), indicative of a pronounced mal-

nutrition risk, whereas the true-negative case exhibited a 

strongly negative SHAP value (-1.94), reflecting robust 

protective determinants. 

To assess the generalizability of these findings, the 

SHAP framework was extended to evaluate additional 

ML models. As illustrated in Supplementary Figure 4, 

BMI, CC, age, NYHA classification, and diabetes con-

sistently emerged as significant risk factors of malnutri-

tion across all the other models. This recurrent promi-

nence underscores their pivotal role in shaping risk strati-

fication outcomes, irrespective of the algorithmic ap-

proach employed. 

 

DISCUSSION 

Principal findings 

Malnutrition in older adults with CHF is a multifactorial 

condition driven by metabolic imbalances, reduced die-

tary intake, and systemic inflammation, contributing to 

adverse outcomes such as prolonged hospitalization, post-

acute facility admission, and increased mortality.29 De-

spite its clinical significance, timely identification of 

high-risk patients remains challenging due to heterogene-

ous risk profiles and dynamic disease trajectories. Our 

ML-based model was developed to address this gap by 

providing a screening tool tailored for clinically actiona-

ble risk stratification. The model’s design emphasized 

clinical interpretability and feasibility, with key risk fac-

tors—including BMI, CC, age, NYHA classification, 

polypharmacy, hs-CRP, and PNI—consistent with estab-

lished biological pathways linking CHF and malnutrition. 

These variables were rigorously validated through inter-

nal and external cohorts. Integration of this tool into EHR 

systems could enable automated risk alerts during patient 

admission, potentially prompting clinicians to prioritize 

nutritional screening or initiate early interventions. While 

preliminary findings suggest that the model may stream-

line risk stratification, further prospective studies are re-

quired to evaluate its impact on reducing diagnostic de-

lays or optimizing resource allocation in clinical practice. 

 

Comparison with prior work 

Our findings revealed a malnutrition prevalence of 44.1% 

(348/790) among hospitalized older adults with CHF, 

which was consistent with the previously reported range 

of 6-60% in the literature.11 However, Hersberger et al., 

observed a universal malnutrition risk of 100% (n = 645)  

 
 

Figure 2. Variable selection using LASSO regression and multivariable regression analysis. (A) LASSO coefficient path plots illustrating 

variables shrinkage across increasing penalty parameters. (B) Ten-fold cross-validation curve for selecting the optimal penalty parameter 

(λ) in the LASSO regression model. The dashed red vertical line indicates λ-min (the λ value yielding the minimum mean squared error, 

MSE). The dashed blue vertical line denotes λ-1se (the largest λ within one standard error of the minimum MSE). (C) LASSO regression 

at the λ-1se value retained eight variables with non-zero coefficients, forming the final feature subset. (D) Independent predictors of mal-

nutrition identified through multivariable regression analysis 
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Figure 3. Comparative performance of eight ML models in the training set. (A) Comparison of model performance metrics across all 

models. (B) ROC curves comparing discrimination performance across models. (C) Heatmap scoring system (total score: 64 points) as-

sessing model performance. Higher scores (red) indicate better performance; lower scores (green) denote poorer performance. (D) Calibra-

tion plots comparing predicted probabilities against observed outcomes. Closer alignment to the diagonal (ideal calibration line) reflects 

improve accuracy. (E) DCA evaluating net clinical benefit across probability thresholds. kindly note that manuscript will be printed in 

greyscale.  
 
 

 
 

Figure 4. Internal and validation of eight ML models for malnutrition risk stratification. (A) Comparison of performance metrics across all 

ML models in both cohorts. (B) ROC curves comparing discrimination performance across models in both cohorts  
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Figure 5. Calibration and clinical utility of the eight ML models in internal and external datasets. (A) Calibration curve evaluation. (B) 

DCA curve.  

 
 
 

 
 

Figure 6. Interpretability of the CatBoost model using SHAP analysis. (A) SHAP summary plot ranking feature importance based on 

mean absolute SHAP values. (B) Beeswarm plot illustrating feature contributions across the cohort. (C-D) Waterfall plots demonstrating 

SHAP value contributions for a representative true-positive case (C) and a true-negative case (D). Positive SHAP value (black) increase 

malnutrition risk; negative values (grey) decrease risk  
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in CHF patients assessed using the NRS-2002 tool.30 This 

disparity likely reflects differences in study populations, 

diagnostic criteria (e.g., NRS-2002 vs. GLIM criteria), 

and methodological heterogeneity in nutritional assess-

ment. Recent efforts to predict malnutrition in cardiac 

populations have resulted in a variety of approaches. Shi 

et al. developed an XGBoost model to predict post-

operative malnutrition in pediatric patients with congeni-

tal heart disease, achieving a superior AUC across all 

outcomes.31 Similarly, Liu et al. constructed a nomogram 

for early malnutrition risk stratification in HF patients; 

however, its reliance on LR limited its adaptability to 

non-linear relationships.32 Tang et al. advanced this field 

by integrating GLIM with LR model, demonstrating 

strong discriminative power in older HF cohorts.33 While 

these studies underscore the value of risk stratification 

modeling, their scope remains limited to specific subpop-

ulations or conventional statistical methods. Our work 

addressed a critical unmet need by introducing a ML-

based model specifically optimized for older adults with 

CHF. Distinct from prior efforts, our methodology sys-

tematically evaluated eight ML algorithms, identifying 

the CAT model as superior in balancing interpretability 

and predictive accuracy. Rigorous hyperparameter tuning 

and five-fold cross-validation mitigated overfitting risks, 

while SHAP analysis elucidated clinically plausible risk 

factors. Therefore, these findings suggest that ML-driven 

tools, particularly the CAT framework, have the potential 

to provide a clinically actionable strategy for early malnu-

trition identification. This approach may facilitate timely 

and targeted nutritional interventions to mitigate down-

stream complications in this vulnerable population. 

 

Risk factors for predicting malnutrition among older 

CHF adults 

The SHAP analysis conducted in this study identified 

advanced age, lower BMI, reduced CC, severe cardiac 

dysfunction (NYHA class III-IV), reduced PNI, increased 

hs-CRP, diabetes, and polypharmacy (≥5 medications) as 

the most influential risk factors for malnutrition in older 

adults with CHF. The association between advanced age 

and malnutrition risk likely reflects the interplay of age-

related sarcopenia, diminished appetite, and metabolic 

alterations exacerbated by the progression of CHF. Re-

duced skeletal muscle mass and fat reserves—evidenced 

by lower BMI and CC—serve as critical biomarkers of 

nutritional depletion, which were consistent with studies 

demonstrating their values in malnutrition screening.34, 35 

For example, an ML-based predictive model developed 

by Wang et al substantiated that older adults with lower 

BMI and CC are at an elevated risk of malnutrition.36 

Furthermore, a nomogram model developed by Duan et 

al. highlighted age and BMI as crucial predictors of mal-

nutrition among hospitalized cancer patients.37 Concur-

rently, severe cardiac dysfunction (NYHA class III-IV) 

intensifies metabolic stress and energy demands, thereby 

creating a persistent catabolic state that accelerates nutri-

tional depletion.38 This finding corroborated previous 

evidence linking advanced functional class in congestive 

HF patients to a higher prevalence of malnutrition.39 Ad-

ditionally, polypharmacy (≥5 medications)—common in 

the management of advanced CHF—was associated with 

an increased risk of malnutrition, consistent with studies 

linking polypharmacy and advanced cardiac disease to 

nutritional deficiencies.40 The adverse effects of 

polypharmacy are multifaceted, encompassing drug-

nutrient interactions, gastrointestinal disturbances, and 

appetite suppression, all of which contribute to the risk of 

malnutrition.41  

Furthermore, the role of systemic inflammation in ex-

acerbating malnutrition risk was prominently highlighted 

in our study. The ML-based model identified diabetes as 

a significant risk factor for malnutrition, underscoring the 

complex interplay between metabolic dysregulation and 

nutritional deterioration in older adults with CHF. These 

findings corroborate emerging evidence regarding the 

synergistic mechanisms linking comorbidity burden, 

chronic inflammation, and cardiac cachexia in this vul-

nerable population.42 In patients with concurrent diabetes 

and CHF, persistent hyperglycemia, insulin resistance, 

and chronic inflammation—evidenced by elevated hs-

CRP levels—are pivotal pathophysiological mechanisms 

contributing to malnutrition. Hyperglycemia disrupts gas-

trointestinal motility and mucosal integrity, impairing the 

bioavailability of essential nutrients, while insulin re-

sistance exacerbates skeletal muscle catabolism, further 

depleting protein reserves.43 Compounding these effects, 

stringent dietary restrictions—particularly carbohydrate 

limitations imposed on diabetic patients—may inadvert-

ently precipitate micronutrient deficiencies and energy 

deficits.44 Notably, in our cohort, reduced PNI levels and 

elevated hs-CRP levels—reflecting compromised nutri-

tional status and systemic inflammation—were associated 

with accelerated muscle catabolism and anorexia, likely 

mediated by cytokine-driven pathways.45, 46 This observa-

tion aligns with recent studies demonstrating the utility of 

hs-CRP and PNI as predictive biomarkers for malnutri-

tion in patients with chronic conditions.47, 48 Our results 

extend this paradigm to CHF, emphasizing that subclini-

cal nutritional and inflammatory biomarkers—often over-

looked in routine clinical assessments—may serve as ear-

ly indicators of nutritional decline.  

 

Clinical implications 

These findings of this study hold potential implications 

for improving the management of hospitalized older pa-

tients with CHF. The SHAP analysis identified key risk 

factors of malnutrition (e.g., BMI, CC, NYHA classifica-

tion), which may guide clinicians in systematically evalu-

ating high-risk patients and addressing the multifactorial 

drivers of nutritional decline. Early recognition of these 

factors could enable targeted interventions to mitigate 

malnutrition risk, potentially improving clinical outcomes 

such as reduced hospital readmission rates. For example, 

incorporating routine assessments of anthropometric pa-

rameters (e.g., BMI, CC), cardiac function (NYHA class), 

and inflammatory and nutritional biomarkers (hs-CRP, 

PNI) at admission may facilitate timely risk stratification 

and nutritional support. Furthermore, the integration of 

this ML-based malnutrition risk stratification model with 

established nutrition screening tools, such as MUST or 

NRS-2002, could enhance clinical decision-making for 

hospitalized older adults with CHF. This hybrid approach 

may improve early risk detection, particularly in complex 
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patients with overlapping comorbidities that confound 

conventional assessments. While these strategies appear 

promising for optimizing quality of life and long-term 

outcomes, their clinical efficacy remains to be empirically 

tested in real-world settings. 

 

Limitations 

This study has several limitations that warrant considera-

tion. First, the model was developed and validated using a 

single-institute cohort, which may introduce selection 

bias and limit generalizability to populations with diver-

gent demographics, clinical practices, or healthcare eco-

systems. Although external validation was performed, the 

external cohort derived from a geographically adjacent 

affiliated agency, potentially insufficient to capture 

broader population heterogeneity. Multicenter studies 

across diverse healthcare settings are needed to confirm 

the model’s generalizability. Second, while the model 

demonstrated accuracy for stratifying malnutrition risk at 

admission, its cross-sectional design precludes insights 

into dynamic changes in risk during hospitalization or 

post-discharge. Factors such as treatment responses, die-

tary interventions, or new comorbidities acquired during 

hospitalization—which may modulate malnutrition risk—

were not accounted for. Future longitudinal studies are 

required to validate the model’s ability to predict evolv-

ing risk trajectories. Third, the dataset lacked granular 

details on psychological status, dietary habits, and care-

giver support, all of which are established contributors to 

malnutrition risk. Incorporating these variables in pro-

spective longitudinal studies could enhance risk stratifica-

tion accuracy. Fourth, although the CAT algorithm out-

performed other models in this study, its integration into 

clinical workflows necessitates further validation in real-

world settings to assess usability and tangible impacts on 

patient outcomes. Finally, the model’s potential to guid-

ing nutritional interventions and improve clinical out-

comes remains hypothetical. Randomized controlled trials 

are required to empirically quantify its clinical utility in 

patient management. Addressing these limitations will 

strengthen the translational potential of this tool and sup-

port its integration into evidence-based clinical practice 

for older adults with CHF. 

 

Conclusion 

This study developed and validated a ML-based model 

for stratifying malnutrition risk in hospitalized older 

adults with CHF. The CAT algorithm outperformed other 

models regarding discrimination, calibration, and clinical 

utility in both internal and external validations. By utiliz-

ing routinely collected clinical parameters—such as BMI, 

NYHA class, and hs-CRP—this tool offers a clinically 

feasible method for the early identification of high-risk 

patients during admission. While the model’s screening 

accuracy supports its potential utility in guiding nutrition-

al interventions, its efficacy in mitigating adverse out-

comes remains to be empirically validated. Future studies 

should address existing limitations and explore the long-

term implications of the risk stratification model. 
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