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Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition globally,
with an escalating incidence and a strong association with various metabolic disorders, thus presenting a signifi-
cant public health challenge. Currently, there is a scarcity of effective preventive or therapeutic methods for
NAFLD. This study used multi-omics, machine learning (ML), and SHAP comprehensive analysis to explore
NAFLD-related metabolites and genes, hoping to provide new insights. Methods and Study Design: We initial-
ly conducted MR analysis on 1,400 serum metabolites and two NAFLD datasets, identifying glutamine as causal-
ly linked to NAFLD. In single-cell RNA sequencing, hepatocytes were categorized into high-synthesis and low-
synthesis glutamine groups for cell communication analysis. We extracted differentially expressed genes from
these two groups and performed GO and KEGG enrichment analysis. Further screening of these genes was fol-
lowed by the application of LASSO regression to identify hub genes for ML. We constructed the ML model us-
ing Catboost, NGboost, and XGboost algorithms. Finally, we employed the SHAP method to interpret the model,
identifying key genes with significant model contributions. Results: MR analysis demonstrated that the gluta-
mine-to-alanine ratio and levels of 1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) were associated with a reduced
incidence of NAFLD. We identified 19 hub genes for ML, with validation set AUCs of 0.83 for Catboost, 0.82
for NGboost, and 0.86 for XGboost. The SHAP analysis highlighted ASL, LGALS1, and GLUL as genes with
the contributed significantly to the models. Conclusions: Our MR findings suggest that specific metabolites may
lower the risk of NAFLD. A comprehensive analysis underscores the significant role of glutamine metabolism
and related genes in NAFLD pathogenesis, offering new potential targets for NAFLD diagnosis and treatment.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is widespread,
affecting approximately 32.4% of the global population.'
It is defined by the accumulation of lipid droplets in
hepatocytes in the absence of excessive alcohol intake,
with at least 5% hepatic steatosis.”> The condition poses a
significant public health issue due to its increasing preva-
lence and strong linkage to various metabolic disorders
such as obesity, type 2 diabetes, and dyslipidemia.>* An-
nually, NAFLD-related medical costs surpass €35 billion
across four major European nations (the United Kingdom,
France, Germany, and Italy) and exceed $100 billion in
the United States, imposing a substantial clinical burden.’
In 2020, an international consensus expert panel recom-
mended the term metabolic dysfunction-associated fatty
liver disease (MAFLD) as a replacement for NAFLD,
considering MAFLD's broader and independent scope.®”
Despite extensive research efforts, no effective prevention
or treatment methods for NAFLD are currently available.

Recent genomic and metabolomic studies have offered
new insights into the pathogenesis of NAFLD.® Variants
in genes such as patatin-like phospholipase domain-
containing 3, transmembrane 6 superfamily member 2,
and 17-beta hydroxysteroid dehydrogenase 13 are linked
to NAFLD susceptibility.” Metabolic processes involving
lipids, amino acids, and bile acids are thought to contrib-
ute to NAFLD's pathogenesis.!*!" For instance, changes
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in circulating amino acids, such as elevated levels of
branched-chain and aromatic amino acids, along with
reduced levels of amino acids related to glutathione syn-
thesis, are common in NAFLD patients.'>'* NAFLD pa-
tients also show significantly increased plasma total pri-
mary bile acids and decreased secondary bile acids.!
Nevertheless, causal relationships between these metabo-
lites and NAFLD remain to be clarified.

Mendelian randomization (MR) offers a method of
causal inference, utilizing germline genetic variations as
instrumental variables (IVs) to minimize bias from resid-
ual confounding or reverse causation.'®!7 Machine learn-
ing (ML) is adept at analyzing large datasets, revealing
valuable patterns and explanations.'® However, the "black
box" nature of ML limits the use of more sophisticated
ML methods in medical decision support. Shapley Addi-
tive exPlanations (SHAP), rooted in game theory, pro-
vides a transparent explanation of ML models.

Our study integrated MR and multi-omics analysis with
ML to examine serum metabolites and genes linked to
NAFLD pathogenesis, using the SHAP algorithm to elu-
cidate the constructed ML model. This aims to offer new
directions and insights for NAFLD diagnosis and treat-
ment.

METHODS

Mendelian randomization design

Selection and description of data sources

The Genome-Wide Association Studies (GWAS) data
utilized in this study were sourced from IEU OpenGWAS
(https://gwas.mrcieu.ac.uk/), the GWAS Catalog
(https://www.ebi.ac.uk/gwas/), and FINNGEN
(https://www.finngen.fi/en).'*2! All these data are public-
ly accessible. For exposure data, we analyzed 1,400
plasma  metabolites  with  accession  numbers
GCST90199621-90201020 from the GWAS Catalog.?
The outcome data concerning NAFLD were sourced from
IEU, dataset: ebi-a-GCST90091033, and FINNGEN, da-
taset: finngen R10_NAFLD, primarily involving Europe-
an participants.

Instrumental variables selection

(a) We filtered 1,400 plasma metabolic single nucleotide
polymorphisms (SNPs) using a significance threshold of
p <1x10-5. (b) We ensured a physical distance of more
than 10,000 k between each pair of SNPs, and the r?
threshold for linkage disequilibrium was set at < 0.001.
Palindromic SNPs with inconsistent effect allele frequen-
cies across the exposure and outcome datasets were ex-
cluded. (c) We included only SNPs with an F-statistic >
10.3

MR Analysis

The “TwoSample MR” package in R version 4.3.1 was
employed for MR analysis. Primarily, we utilized the
inverse variance weighting (IVW) method to estimate the
causal relationship between exposure and outcome, ap-
plying a fixed-effect meta-analysis model that assumes all
SNPs exert a single true effect size.>* We conducted MR
analysis across 1,400 plasma metabolites and the two
NAFLD datasets (ebi-a-GCST90091033 and fin-
ngen R10 NAFLD). A p-value < 0.05 via the IVW

method indicated significant associations. To confirm
robustness, we applied additional MR methods (MR-
Egger, Weighted Median, Weighted Mode, and Simple
Mode). We identified compounds with causal relation-
ships by intersecting results from both datasets.

Sensitivity analysis

Cochran's Q test p-value assessed heterogeneity, with p <
0.05 signaling significant heterogeneity.”> We used the
MR-Egger intercept test to detect horizontal pleiotropy.2®
MR-PRESSO was employed to identify outlier instru-
mental variables and provide adjusted causal estimates
after their removal.?’ Additionally, the leave-one-out
method was used to evaluate result stability by sequen-
tially removing each SNP.

Single-cell RNA sequencing data processing

The single-cell RNA sequencing (scRNA-seq) dataset for
NAFLD was obtained from the National Center for Bio-
technology Information Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/)
GSE202379.28 The “Seurat” package (version 4.3.0) was
used for single-cell analysis. Samples with less than 10%
mitochondrial content, fewer than 4000 genes, and more
than 200 genes were retained after quality control. High-
quality samples were integrated and then normalized us-
ing the NormalizeData function. Principal component
analysis was conducted via the RunPCA function for
clustering and dimensionality reduction, and cell clusters
were annotated using the SingleR package. The intersec-
tion of the MR results of the two data sets gave the glu-
tamine to alanine ratio and 1-linoleoyl-2-arachidonoyl-
GPC (18:2/20:4n6) levels, which can reduce the risk of
NAFLD. Among them, glutamine is the most abundant
and widely used amino acid in the human body and is
related to immune regulation in the human body.?* More-
over, in ebi-a-GCST90091033, glutamine can reduce the
risk of NAFLD (IVW p = 0.01). In the liver, alanine can
react with a-ketoglutarate to generate pyruvate and glu-
tamate, and glutamate can further synthesize glutamine in
hepatocytes. Therefore, we determined that the synthesis
of glutamine would be the next research direction. We
downloaded the gmt file of glutamine synthesis:
GOBP_GLUTAMINE FAMILY AMINO ACID BIOS

YNTHETIC PROCESS from MSigDB
(https://www.gsea-msigdb.org/gsea/msigdb). In the pro-
cessed single-cell dataset, the score of glutamine synthe-
sis was added by read.gmt and AddModuleScore func-
tions. It was found that hepatocytes had the highest score.
Hepatocytes were divided into two groups (synthe-
sis_high and synthesis low) according to the median
score of glutamine synthesis, and a ratio graph was
drawn.

Transcription factor activity prediction, cell communi-
cation, and enrichment analysis

The dorothea package predicted transcription factor activ-
ity differences between synthesis_high and synthesis_low
groups within NAFLD patients, selecting the top 20 tran-
scription factors for visualization. The CellChat package
examined cell communication, particularly among syn-
thesis_high, synthesis_low, and other cells. Differentially
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expressed genes in synthesis high and synthesis low
groups were identified using the FindMarkers function.
KEGG and GO enrichment analysis were carried out,
significant at an adjusted p-value < 0.05.

Construction of training and validation sets and screen-
ing of hub genes

GSE61260 was chosen as the training set.’® GSE48452
served as the test set.’! Gene symbols were matched to
probes based on the GPL11532 platform, and common
genes between the sets were extracted. Batch effect cor-
rection was applied, and subsequent analysis and model-
ing utilized these corrected sets. Further filtering of dif-
ferentially expressed genes involved choosing those with
a p-value < 0.05 and log2FC > 0.25, excluding mitochon-
drial, ribosomal, and erythrocyte genes. LASSO regres-
sion was applied to identify hub genes. We utilized the
glmnet package in R to fit a binomial LASSO regression
model. To ensure the robustness of the model and to de-
termine the optimal value of the penalty parameter
(lambda), we performed 10-fold cross-validation using
the cv.glmnet function. The lambda value that minimizes
the binomial deviance was selected as the optimal param-
eter. A PPI network for the hub gene was constructed
using the STRING database (version 12.0).

Machine learning and SHAP algorithm analysis

For hub genes selection, CatBoost, XGBoost, and
NGBoost were utilized as ML models due to their flexi-
bility, scalability, and high usability, making them preva-
lent in various research domains.’?>3* SHAP, based on
game theory, was employed to elucidate the importance
of each model feature.* Post-ML model construction,
SHAP interpretation provided insights into the most in-
fluential genes impacting the model. Figure 1 illustrates
the study design flowchart.
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low synthesis of Glutamine
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'

Cat boost
NG boost
XG boost

t
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RESULTS

Causal association of glutamine-to-alanine ratio with
reduced NAFLD risk

Results with IVW p value less than 0.05 in the MR analy-
sis of 1,400 metabolites and NAFLD are detailed in Sup-
plementary Table 1-2. By MR analysis, we obtained the
ratio of glutamine to alanine ratio and 1-linoleoyl-2-
arachidonoyl-GPC  (18:2/20:4n6) levels in ebi-a-
GCST90091033 and finngen R10 NAFLD, with p val-
ues less than 0.05 in the IVW method (Figure 2A). The
glutamine to alanine ratio was associated with a de-
creased risk of NAFLD (Figure 2B-C, Table 1), and glu-
tamine was shown to lower NAFLD risk within the ebi-a-
GCST90091033 dataset (Figure 2D, Table 1). Their scat-
ter plot and leaveoneout plot are shown in Figure 3. Sen-
sitivity analysis confirmed no pleiotropy regarding glu-
tamine to alanine and glutamine to NAFLD associations
(Table 2). MR-PRESSO and leave-one-out analysis de-
tected no abnormal instrumental variables.

Single-cell RNA sequencing reveals hepatocyte gluta-
mine synthesis heterogeneity and endothelial cell inter-
actions

The annotated cell plan view is shown in Figure 4A.
Incorporating the glutamine synthesis score into sSCRNA-
seq revealed hepatocytes as having the highest synthesis
score (Figure 4B). Based on this median score, hepato-
cytes were categorized into high and low glutamine syn-
thesis groups (synthesis high and synthesis low). The
distribution chart indicates a higher proportion of synthe-
sis_high in healthy individuals compared to NAFLD pa-
tients (Figure 4C), aligning with MR analysis findings. In
cell communication analysis, synthesis_high demonstrat-
ed more extensive interactions with endothelial cells than
synthesis_low (Figure 4D-E). Previous studies have
shown that endothelial cells exert anti-inflammatory and
anti-fibrotic effects by inhibiting Kupffer cell and hepatic
stellate cell activation and regulating intrahepatic vascular
resistance and portal vein pressure.*® Based on cell com-
munication results, synthesis_high hepatocytes may exert

Cellular communication analysis
Transcription factor predictive analysis

GO, KEGG enrichment analysis

Figure 1. The research design's flow chart. LASSO: least absolute shrinkage and selection operator; PPI: protein-protein interaction
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Figure 2. Result of mendelian randomization. (A) Venn diagram of 1400 serum metabolites mendelian randomization results of ebi-a-
GCST90091033 and finngen R10_NAFLD. (B) Forest plot of the results of mendelian randomization of Glutamine to alanine ratio and
NAFLD in finngen R10_NAFLD. (C) Forest plot of the results of mendelian randomization of Glutamine to alanine ratio and NAFLD in
ebi-a-GCST90091033. (D) Forest plot of the results of mendelian randomization of Glutamine levels and NAFLD in ebi-a-

GCST90091033. NAFLD: non-alcoholic fatty liver disease

Table 1. The Mendelian randomization results of glutamine to alanine ratio and glutamine levels

Exposure Outcome nSNP Method pval beta Database
Glutamine levels NAFLD 24 IVW 0.010 -0.102 IEU
Glutamine to alanine ratio NAFLD 30 IVW 0.004 -0.144 IEU
Glutamine to alanine ratio NAFLD 37 IVW 0.015 -0.175 FinnGen

MR: Mendelian randomization; NAFLD: non-alcoholic fatty liver disease; IVW: inverse variance weighted; SNP: single nucleotide poly-

morphism; pval: IVW p value.

their anti-inflammatory effects by activating endothelial
cells to regulate the hepatic vascular microenvironment.
Transcription factor analysis showed opposing predic-
tions between synthesis _high and synthesis_low (Figure
4F). The differential genes of synthesis_high and synthe-
sis_low were extracted, and a total of 4785 differential
genes were obtained for enrichment analysis. KEGG en-
richment analysis showed that the differential genes were
not only enriched in NAFLD but also in various neuro-
degenerative diseases (Figure 4G). The homeostasis of
glutamine in the body is also related to neurodegenera-
tion.*”*® GO enrichment analysis highlighted gene in-
volvement in RNA splicing, ribosome, mitochondrial
inner membrane, and cadherin binding (Figure 4H).

Machine learning models and SHAP uncover key regu-
lators (ASL, LGALS1, GLUL) with diagnostic utility in
NAFLD

Further screening of 4,785 differential genes with a p-
value < 0.05 and log2FC > 0.25, excluding mitochondrial,
ribosomal, and erythrocyte genes, resulted in 30 candidate
genes, with LASSO regression narrowing this to 19 hub
genes (Figures 5A-B). PPI analysis of these hub genes
utilized the STRING database (Figure 5C). We developed

ML models using Catboost, NGboost, and XGboost for
these hub genes. In the validation set, the Areas Under the
Curve (AUC) were 0.83 for Catboost, 0.82 for BGboost,
and 0.86 for XGboost (Figure 5D), affirming high diag-
nostic accuracy (AUC > 0.7). SHAP analysis provided
model insights through Summary Plots, Beeswarm Plots,
and Heatmap Plots (Figure SE-M). ASL contributed most
significantly to Catboost, LGALS1 to NGboost, and
LGALSI also to XGboost. Notably, ASL, LGALSI, and
GLUL consistently ranked among the top five contribu-
tors in all models. LGALSI1 correlated positively with
NAFLD risk, whereas ASL and GLUL correlated nega-
tively. This suggests that ASL, LGALS1, and GLUL may
play important roles in NAFLD.

DISCUSSION

In this study, we employed MR, multi-omics analysis,
ML, and SHAP methods to explore metabolites and key
genes implicated in the pathogenesis of NAFLD. Our
findings showed that the glutamine to alanine ratio and 1-
linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) levels can
reduce NAFLD risk. Hepatocytes with high glutamine
synthesis (synthesis_high) serve as protective factors
against NAFLD. Utilizing ML and SHAP algorithms, we
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Figure 3. Scatter plot and leaveoneout plot. (A) Scatter plot of glutamine to alanine ratio and NAFLD in finngen R10_NAFLD. (B) Scatter plot of glutamine to alanine ratio and NAFLD in ebi-a-GCST90091033.

(C) Scatter plot of glutamine levels and NAFLD in ebi-a-GCST90091033. (D) Leaveoneout plot of glutamine to alanine ratio and NAFLD in finngen R10 NAFLD. (E) Leaveoneout plot of glutamine to alanine

ratio and NAFLD in ebi-a-GCST90091033. (F) Leaveoneout plot of glutamine levels and NAFLD in ebi-a-GCST90091033.
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Figure 4. Results of scRNA-seq analysis. (A) UMAP of scRNA-seq; (B) The score of glutamine synthesis in different cells. Hepatocytes
had the highest score; (C) The proportion of synthesis_high and synthesis_low in NAFLD group and Normal group. The proportion of
synthesis_high in the NAFLD group was higher than that in the Normal group; (D)-(E) Cell communication of synthesis_high and synthe-
sis_low; (F) Transcription factor activity prediction of synthesis_high and synthesis_low; (G)-(H) KEGG and GO enrichment analysis of
differentially expressed genes in synthesis_high and synthesis_low. Synthesis_high: hepatocytes with high glutamine synthesis. Synthe-
sis_low: hepatocytes with low glutamine synthesis. NAFLD: non-alcoholic fatty liver disease

constructed diagnostic models that identified ASL,
LGALSI, and GLUL as significant genes. These metabo-
lites and genes may offer novel therapeutic directions for
NAFLD.

Over the past few decades, the intricate link between
metabolism and the immune system has been increasingly
recognized. Glutamine emerged as a protective factor in
our analysis. It is well known that glutathione, a tripeptide
comprising glutamate, cysteine, and glycine, protects tis-
sues from oxidative damage by detoxifying reactive spe-
cies and/or repairing cellular damage. Glutamine can re-
duce pro-inflammatory gene and protein levels in adipo-
cytes, and its increased breakdown is observed in
NAFLD-affected livers.*4° Targeted glutaminase therapy
has shown promise in improving nonalcoholic steato-
hepatitis by facilitating very low-density lipoprotein tri-
glyceride assembly.*! Decreased serum glutamine levels

correlate with liver fibrosis progression and depressive
symptoms in NAFLD patients.****3 Hypoxia-inducible
factor 2a activation can lead to glutaminolysis by inhibit-
ing YAP phosphorylation and increasing YAP nuclear
translocation, thereby enhancing NAFLD fibrosis and
progression.** Glutamine supplementation has been
shown to ameliorate intestinal flora dysbiosis and
NAFLD induced by high-fat diets in mice.** Our MR
analysis also identified that 1-linoleoyl-2-arachidonoyl-
GPC (18:2/20:4n6) could lower NAFLD risk. NAFLD
patients often show reduced levels of sphingolipids and
phosphocholine in both liver and plasma, compared to
healthy individuals.*® Phosphatidylcholine, in particular,
is effective in reducing endotoxin-stimulated tumor ne-
crosis factor-a release in the liver.*” Additional metabo-
lites like vitamin A and deoxycholate, shown to reduce
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Figure 5. Machine learning and SHAP. (A) Path diagram of LASSO coefficients of hub genes in the training set. (B) Cross validation plot of LASSO regression. (C) PPI network of hub genes. (D) AUC curves of
three machine learning methods in the validation set. The AUC of Catboost is 0.83, NGboost is 0.82, and XGboost is 0.86. (E)-(G) Summary Plots, Beeswarm Plots, and Heatmap Plots of Catboost. The gene with
the largest contribution in Catboost is ASL. (H)-(J) Summary Plots, Beeswarm Plots, and Heatmap Plots of NGboost. The gene with the largest contribution in NGboost is LGALS1. (K)-(M) Summary Plots,
Beeswarm Plots, and Heatmap Plots of XGboost. The gene with the largest contribution in XGboost is LGALS]1.
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Table 2. Sensitivity analysis results

Exposure Outcome pleiotropy test pval Cochran’s Q test pval

MR Egger IVM
Glutamine levels (IEU) NAFLD 0.055 0.753 0.563
Glutamine to alanine ratio (IEU) NAFLD 0.888 0.018 0.023
Glutamine to alanine ratio (FinnGen) NAFLD 0.139 0.097 0.069

NAFLD: non-alcoholic fatty liver disease; [IVW: inverse variance weighted.

NAFLD risk, were also identified. Notably, vitamin A
intake inversely correlates with NAFLD risk, and tau-
roursodeoxycholic acid has been shown to moderate in-
testinal inflammation and NAFLD progression in mice.*®
4 Further studies are needed to elucidate the mechanisms
through which these metabolites affect NAFLD.

Through the transcription factor prediction analysis of
synthesis_high and synthesis_low, we found that the pre-
dictions of transcription factors for these two cells were
completely opposite. Synthesis_high correlates positively
with transcription factors such as CREB1, ATF4, PPA-
RA, HNFIB, and TCF7L2. CREB1 modulates stearoyl-
CoA desaturase 1, a contributor to hepatic steatosis.>
ATF4's involvement in endoplasmic reticulum stress and
autophagy modulation can mitigate hepatic steatosis.>!
PPARA regulates hepatic lipid metabolism.>?> HNF1B
impacts liver fat content in high-fat diet mice, and
TCF7L2 maintains bile acid and lipid homeostasis via
gut-liver communication.>-* Hence, synthesis_high po-
tentially inhibits NAFLD progression through these
pathways.

Using SHAP to analyze our ML models revealed
GLUL, ASL, and LGALS1 as key gene contributors.
ASL and GLUL were inversely related to NAFLD risk,
while LGALS1 showed a positive correlation. GLUL
encodes glutamine synthetase and is vital in detoxifying
ammonia, glutamate signaling, and various cellular pro-
cesses. Decreased GLUL expression was observed in a
2,3,7,8-tetrachlorodibenzo-p-dioxin-induced mouse
NAFLD model.>> GLUL expression in the subcutaneous
adipose tissue of obese patients was significantly lower
than that in lean women.*® Butyrate can increase GLUL
expression to reduce metabolic disorders induced by a
high-fat diet.’” There are currently no research reports on
the mechanisms of ASL and LGALSI in NAFLD. ASL
encodes a member of the lyase 1 family, which mainly
catalyzes the reversible hydrolytic cleavage of arginino-
succinate into arginine and fumarate, which is an im-
portant step in the liver's detoxification of ammonia
through the urea cycle. In other inflammatory diseases,
ASL upregulation can induce endogenous nitric oxide
production in intestinal epithelial cells, thereby improving
epithelial integrity and alleviating colitis and inflamma-
tion-related colon cancer.® In patients with psoriasis,
ASL reduces the inflammatory response by increasing
arginine.”®> LGALSI is a protein-coding gene, and this
gene product may act as an autocrine negative growth
factor that regulates cell proliferation. LGASLI1 is in-
volved in the apoptosis of liver cancer cells.®” In sum-
mary, these genes are related to the regulation of inflam-
mation or apoptosis, suggesting that they may serve as
new targets for the diagnosis and treatment of NAFLD in
the future.

Our study’s strength lies in leveraging MR analysis to
estimate causal relationships using genetic variants, min-
imizing confounding biases. Combining multi-omics,
ML, and SHAP methods, we identified critical NAFLD-
related genes, improving the robustness of our results.
However, there are some limitations to our analysis. First,
the GWAS data used in our study mainly involved Euro-
pean populations, which may limit the generalizability of
our findings to other populations. Second, the validation
set we chose has a relatively small sample size. Validat-
ing our results on a larger cohort will be the direction of
our future research. Finally, this study has not yet verified
the function and mechanism of the results. For example,
how hepatocytes regulate the anti-inflammatory effect of
endothelial cells by synthesizing glutamine is also a focus
of our future research.

Conclusion

In summary, through the comprehensive analysis of MR,
multi-omics, ML, and SHAP, we found that some metab-
olites such as glutamine and 1-linoleoyl-2-arachidonoyl-
GPC (18:2/20:4n6) levels can reduce the risk of NAFLD.
Moreover, we also found three key genes related to
NAFLD: GLUL, ASL, and LGALSI. This suggests that
these metabolites and genes may provide new therapeutic
targets for NAFLD. Future research efforts could be
aimed at validating these hypotheses and uncovering im-
plications for clinical practice, potentially leading to in-
novative treatments that address the immune and meta-
bolic components of NAFLD.
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