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Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition globally, 

with an escalating incidence and a strong association with various metabolic disorders, thus presenting a signifi-

cant public health challenge. Currently, there is a scarcity of effective preventive or therapeutic methods for 

NAFLD. This study used multi-omics, machine learning (ML), and SHAP comprehensive analysis to explore 

NAFLD-related metabolites and genes, hoping to provide new insights. Methods and Study Design: We initial-

ly conducted MR analysis on 1,400 serum metabolites and two NAFLD datasets, identifying glutamine as causal-

ly linked to NAFLD. In single-cell RNA sequencing, hepatocytes were categorized into high-synthesis and low-

synthesis glutamine groups for cell communication analysis. We extracted differentially expressed genes from 

these two groups and performed GO and KEGG enrichment analysis. Further screening of these genes was fol-

lowed by the application of LASSO regression to identify hub genes for ML. We constructed the ML model us-

ing Catboost, NGboost, and XGboost algorithms. Finally, we employed the SHAP method to interpret the model, 

identifying key genes with significant model contributions. Results: MR analysis demonstrated that the gluta-

mine-to-alanine ratio and levels of 1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) were associated with a reduced 

incidence of NAFLD. We identified 19 hub genes for ML, with validation set AUCs of 0.83 for Catboost, 0.82 

for NGboost, and 0.86 for XGboost. The SHAP analysis highlighted ASL, LGALS1, and GLUL as genes with 

the contributed significantly to the models. Conclusions: Our MR findings suggest that specific metabolites may 

lower the risk of NAFLD. A comprehensive analysis underscores the significant role of glutamine metabolism 

and related genes in NAFLD pathogenesis, offering new potential targets for NAFLD diagnosis and treatment. 
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is widespread, 

affecting approximately 32.4% of the global population.1 

It is defined by the accumulation of lipid droplets in 

hepatocytes in the absence of excessive alcohol intake, 

with at least 5% hepatic steatosis.2 The condition poses a 

significant public health issue due to its increasing preva-

lence and strong linkage to various metabolic disorders 

such as obesity, type 2 diabetes, and dyslipidemia.3-4 An-

nually, NAFLD-related medical costs surpass €35 billion 

across four major European nations (the United Kingdom, 

France, Germany, and Italy) and exceed $100 billion in 

the United States, imposing a substantial clinical burden.5 

In 2020, an international consensus expert panel recom-

mended the term metabolic dysfunction-associated fatty 

liver disease (MAFLD) as a replacement for NAFLD, 

considering MAFLD's broader and independent scope.6-7 

Despite extensive research efforts, no effective prevention 

or treatment methods for NAFLD are currently available. 

 

 

 

Recent genomic and metabolomic studies have offered 

new insights into the pathogenesis of NAFLD.8 Variants 

in genes such as patatin-like phospholipase domain-

containing 3, transmembrane 6 superfamily member 2, 

and 17-beta hydroxysteroid dehydrogenase 13 are linked 

to NAFLD susceptibility.9 Metabolic processes involving 

lipids, amino acids, and bile acids are thought to contrib-

ute to NAFLD's pathogenesis.10-11 For instance, changes 
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in circulating amino acids, such as elevated levels of 

branched-chain and aromatic amino acids, along with 

reduced levels of amino acids related to glutathione syn-

thesis, are common in NAFLD patients.12-14 NAFLD pa-

tients also show significantly increased plasma total pri-

mary bile acids and decreased secondary bile acids.15 

Nevertheless, causal relationships between these metabo-

lites and NAFLD remain to be clarified. 

Mendelian randomization (MR) offers a method of 

causal inference, utilizing germline genetic variations as 

instrumental variables (IVs) to minimize bias from resid-

ual confounding or reverse causation.16-17 Machine learn-

ing (ML) is adept at analyzing large datasets, revealing 

valuable patterns and explanations.18 However, the "black 

box" nature of ML limits the use of more sophisticated 

ML methods in medical decision support. Shapley Addi-

tive exPlanations (SHAP), rooted in game theory, pro-

vides a transparent explanation of ML models. 

Our study integrated MR and multi-omics analysis with 

ML to examine serum metabolites and genes linked to 

NAFLD pathogenesis, using the SHAP algorithm to elu-

cidate the constructed ML model. This aims to offer new 

directions and insights for NAFLD diagnosis and treat-

ment. 

 

METHODS 

Mendelian randomization design 

Selection and description of data sources 

The Genome-Wide Association Studies (GWAS) data 

utilized in this study were sourced from IEU OpenGWAS 

(https://gwas.mrcieu.ac.uk/), the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/), and FINNGEN 

(https://www.finngen.fi/en).19-21 All these data are public-

ly accessible. For exposure data, we analyzed 1,400 

plasma metabolites with accession numbers 

GCST90199621-90201020 from the GWAS Catalog.22 

The outcome data concerning NAFLD were sourced from 

IEU, dataset: ebi-a-GCST90091033, and FINNGEN, da-

taset: finngen_R10_NAFLD, primarily involving Europe-

an participants. 

 

Instrumental variables selection 

(a) We filtered 1,400 plasma metabolic single nucleotide 

polymorphisms (SNPs) using a significance threshold of 

p < 1 × 10−5. (b) We ensured a physical distance of more 

than 10,000 k between each pair of SNPs, and the r² 

threshold for linkage disequilibrium was set at < 0.001. 

Palindromic SNPs with inconsistent effect allele frequen-

cies across the exposure and outcome datasets were ex-

cluded. (c) We included only SNPs with an F-statistic > 

10.23 

 

MR Analysis  

The “TwoSample MR” package in R version 4.3.1 was 

employed for MR analysis. Primarily, we utilized the 

inverse variance weighting (IVW) method to estimate the 

causal relationship between exposure and outcome, ap-

plying a fixed-effect meta-analysis model that assumes all 

SNPs exert a single true effect size.24 We conducted MR 

analysis across 1,400 plasma metabolites and the two 

NAFLD datasets (ebi-a-GCST90091033 and fin-

ngen_R10_NAFLD). A p-value < 0.05 via the IVW 

method indicated significant associations. To confirm 

robustness, we applied additional MR methods (MR-

Egger, Weighted Median, Weighted Mode, and Simple 

Mode). We identified compounds with causal relation-

ships by intersecting results from both datasets. 

 

Sensitivity analysis 

Cochran's Q test p-value assessed heterogeneity, with p < 

0.05 signaling significant heterogeneity.25 We used the 

MR-Egger intercept test to detect horizontal pleiotropy.26 

MR-PRESSO was employed to identify outlier instru-

mental variables and provide adjusted causal estimates 

after their removal.27 Additionally, the leave-one-out 

method was used to evaluate result stability by sequen-

tially removing each SNP. 

 

Single-cell RNA sequencing data processing 

The single-cell RNA sequencing (scRNA-seq) dataset for 

NAFLD was obtained from the National Center for Bio-

technology Information Gene Expression Omnibus 

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

GSE202379.28 The “Seurat” package (version 4.3.0) was 

used for single-cell analysis. Samples with less than 10% 

mitochondrial content, fewer than 4000 genes, and more 

than 200 genes were retained after quality control. High-

quality samples were integrated and then normalized us-

ing the NormalizeData function. Principal component 

analysis was conducted via the RunPCA function for 

clustering and dimensionality reduction, and cell clusters 

were annotated using the SingleR package. The intersec-

tion of the MR results of the two data sets gave the glu-

tamine to alanine ratio and 1-linoleoyl-2-arachidonoyl-

GPC (18:2/20:4n6) levels, which can reduce the risk of 

NAFLD. Among them, glutamine is the most abundant 

and widely used amino acid in the human body and is 

related to immune regulation in the human body.29 More-

over, in ebi-a-GCST90091033, glutamine can reduce the 

risk of NAFLD (IVW p = 0.01). In the liver, alanine can 

react with α-ketoglutarate to generate pyruvate and glu-

tamate, and glutamate can further synthesize glutamine in 

hepatocytes. Therefore, we determined that the synthesis 

of glutamine would be the next research direction. We 

downloaded the gmt file of glutamine synthesis: 

GOBP_GLUTAMINE_FAMILY_AMINO_ACID_BIOS

YNTHETIC_PROCESS from MSigDB 

(https://www.gsea-msigdb.org/gsea/msigdb). In the pro-

cessed single-cell dataset, the score of glutamine synthe-

sis was added by read.gmt and AddModuleScore func-

tions. It was found that hepatocytes had the highest score. 

Hepatocytes were divided into two groups (synthe-

sis_high and synthesis_low) according to the median 

score of glutamine synthesis, and a ratio graph was 

drawn. 

 

Transcription factor activity prediction, cell communi-

cation, and enrichment analysis 

The dorothea package predicted transcription factor activ-

ity differences between synthesis_high and synthesis_low 

groups within NAFLD patients, selecting the top 20 tran-

scription factors for visualization. The CellChat package 

examined cell communication, particularly among syn-

thesis_high, synthesis_low, and other cells. Differentially 
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expressed genes in synthesis_high and synthesis_low 

groups were identified using the FindMarkers function. 

KEGG and GO enrichment analysis were carried out, 

significant at an adjusted p-value < 0.05. 

 

Construction of training and validation sets and screen-

ing of hub genes 

GSE61260 was chosen as the training set.30 GSE48452 

served as the test set.31 Gene symbols were matched to 

probes based on the GPL11532 platform, and common 

genes between the sets were extracted. Batch effect cor-

rection was applied, and subsequent analysis and model-

ing utilized these corrected sets. Further filtering of dif-

ferentially expressed genes involved choosing those with 

a p-value < 0.05 and log2FC > 0.25, excluding mitochon-

drial, ribosomal, and erythrocyte genes. LASSO regres-

sion was applied to identify hub genes. We utilized the 

glmnet package in R to fit a binomial LASSO regression 

model. To ensure the robustness of the model and to de-

termine the optimal value of the penalty parameter 

(lambda), we performed 10-fold cross-validation using 

the cv.glmnet function. The lambda value that minimizes 

the binomial deviance was selected as the optimal param-

eter. A PPI network for the hub gene was constructed 

using the STRING database (version 12.0). 

 

Machine learning and SHAP algorithm analysis 

For hub genes selection, CatBoost, XGBoost, and 

NGBoost were utilized as ML models due to their flexi-

bility, scalability, and high usability, making them preva-

lent in various research domains.32-34 SHAP, based on 

game theory, was employed to elucidate the importance 

of each model feature.35 Post-ML model construction, 

SHAP interpretation provided insights into the most in-

fluential genes impacting the model. Figure 1 illustrates 

the study design flowchart. 

 

 

 

 

RESULTS 

Causal association of glutamine-to-alanine ratio with 

reduced NAFLD risk 

Results with IVW p value less than 0.05 in the MR analy-

sis of 1,400 metabolites and NAFLD are detailed in Sup-

plementary Table 1–2. By MR analysis, we obtained the 

ratio of glutamine to alanine ratio and 1-linoleoyl-2-

arachidonoyl-GPC (18:2/20:4n6) levels in ebi-a-

GCST90091033 and finngen_R10_NAFLD, with p val-

ues less than 0.05 in the IVW method (Figure 2A). The 

glutamine to alanine ratio was associated with a de-

creased risk of NAFLD (Figure 2B-C, Table 1), and glu-

tamine was shown to lower NAFLD risk within the ebi-a-

GCST90091033 dataset (Figure 2D, Table 1). Their scat-

ter plot and leaveoneout plot are shown in Figure 3. Sen-

sitivity analysis confirmed no pleiotropy regarding glu-

tamine to alanine and glutamine to NAFLD associations 

(Table 2). MR-PRESSO and leave-one-out analysis de-

tected no abnormal instrumental variables. 

 

Single-cell RNA sequencing reveals hepatocyte gluta-

mine synthesis heterogeneity and endothelial cell inter-

actions 

The annotated cell plan view is shown in Figure 4A. 

Incorporating the glutamine synthesis score into scRNA-

seq revealed hepatocytes as having the highest synthesis 

score (Figure 4B). Based on this median score, hepato-

cytes were categorized into high and low glutamine syn-

thesis groups (synthesis_high and synthesis_low). The 

distribution chart indicates a higher proportion of synthe-

sis_high in healthy individuals compared to NAFLD pa-

tients (Figure 4C), aligning with MR analysis findings. In 

cell communication analysis, synthesis_high demonstrat-

ed more extensive interactions with endothelial cells than 

synthesis_low (Figure 4D-E). Previous studies have 

shown that endothelial cells exert anti-inflammatory and 

anti-fibrotic effects by inhibiting Kupffer cell and hepatic 

stellate cell activation and regulating intrahepatic vascular 

resistance and portal vein pressure.36 Based on cell com-

munication results, synthesis_high hepatocytes may exert 

 

 
 

Figure 1. The research design's flow chart. LASSO: least absolute shrinkage and selection operator; PPI: protein-protein interaction 
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their anti-inflammatory effects by activating endothelial 

cells to regulate the hepatic vascular microenvironment. 

Transcription factor analysis showed opposing predic-

tions between synthesis_high and synthesis_low (Figure 

4F). The differential genes of synthesis_high and synthe-

sis_low were extracted, and a total of 4785 differential 

genes were obtained for enrichment analysis. KEGG en-

richment analysis showed that the differential genes were 

not only enriched in NAFLD but also in various neuro-

degenerative diseases (Figure 4G). The homeostasis of 

glutamine in the body is also related to neurodegenera-

tion.37-38 GO enrichment analysis highlighted gene in-

volvement in RNA splicing, ribosome, mitochondrial 

inner membrane, and cadherin binding (Figure 4H).  

 

Machine learning models and SHAP uncover key regu-

lators (ASL, LGALS1, GLUL) with diagnostic utility in 

NAFLD 

Further screening of 4,785 differential genes with a p-

value < 0.05 and log2FC > 0.25, excluding mitochondrial, 

ribosomal, and erythrocyte genes, resulted in 30 candidate 

genes, with LASSO regression narrowing this to 19 hub 

genes (Figures 5A-B). PPI analysis of these hub genes 

utilized the STRING database (Figure 5C). We developed 

ML models using Catboost, NGboost, and XGboost for 

these hub genes. In the validation set, the Areas Under the 

Curve (AUC) were 0.83 for Catboost, 0.82 for BGboost, 

and 0.86 for XGboost (Figure 5D), affirming high diag-

nostic accuracy (AUC > 0.7). SHAP analysis provided 

model insights through Summary Plots, Beeswarm Plots, 

and Heatmap Plots (Figure 5E-M). ASL contributed most 

significantly to Catboost, LGALS1 to NGboost, and 

LGALS1 also to XGboost. Notably, ASL, LGALS1, and 

GLUL consistently ranked among the top five contribu-

tors in all models. LGALS1 correlated positively with 

NAFLD risk, whereas ASL and GLUL correlated nega-

tively. This suggests that ASL, LGALS1, and GLUL may 

play important roles in NAFLD. 

 

DISCUSSION 

In this study, we employed MR, multi-omics analysis, 

ML, and SHAP methods to explore metabolites and key 

genes implicated in the pathogenesis of NAFLD. Our 

findings showed that the glutamine to alanine ratio and 1-

linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) levels can 

reduce NAFLD risk. Hepatocytes with high glutamine 

synthesis (synthesis_high) serve as protective factors 

against NAFLD. Utilizing ML and SHAP algorithms, we

 
 

Figure 2. Result of mendelian randomization. (A) Venn diagram of 1400 serum metabolites mendelian randomization results of ebi-a-

GCST90091033 and finngen_R10_NAFLD. (B) Forest plot of the results of mendelian randomization of Glutamine to alanine ratio and 

NAFLD in finngen_R10_NAFLD. (C) Forest plot of the results of mendelian randomization of Glutamine to alanine ratio and NAFLD in 

ebi-a-GCST90091033. (D) Forest plot of the results of mendelian randomization of Glutamine levels and NAFLD in ebi-a-

GCST90091033. NAFLD: non-alcoholic fatty liver disease 
 

 

Table 1. The Mendelian randomization results of glutamine to alanine ratio and glutamine levels 
Exposure Outcome nSNP Method pval beta Database 

Glutamine levels NAFLD 24 IVW 0.010 -0.102 IEU 

Glutamine to alanine ratio NAFLD 30 IVW 0.004 -0.144 IEU 

Glutamine to alanine ratio NAFLD 37 IVW 0.015 -0.175 FinnGen 
 

MR: Mendelian randomization; NAFLD: non-alcoholic fatty liver disease; IVW: inverse variance weighted; SNP: single nucleotide poly-

morphism; pval: IVW p value. 
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Figure 3. Scatter plot and leaveoneout plot. (A) Scatter plot of glutamine to alanine ratio and NAFLD in finngen_R10_NAFLD. (B) Scatter plot of glutamine to alanine ratio and NAFLD in ebi-a-GCST90091033. 

(C) Scatter plot of glutamine levels and NAFLD in ebi-a-GCST90091033. (D) Leaveoneout plot of glutamine to alanine ratio and NAFLD in finngen_R10_NAFLD. (E) Leaveoneout plot of glutamine to alanine 

ratio and NAFLD in ebi-a-GCST90091033. (F) Leaveoneout plot of glutamine levels and NAFLD in ebi-a-GCST90091033. 
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constructed diagnostic models that identified ASL, 

LGALS1, and GLUL as significant genes. These metabo-

lites and genes may offer novel therapeutic directions for 

NAFLD. 

Over the past few decades, the intricate link between 

metabolism and the immune system has been increasingly 

recognized. Glutamine emerged as a protective factor in 

our analysis. It is well known that glutathione, a tripeptide 

comprising glutamate, cysteine, and glycine, protects tis-

sues from oxidative damage by detoxifying reactive spe-

cies and/or repairing cellular damage. Glutamine can re-

duce pro-inflammatory gene and protein levels in adipo-

cytes, and its increased breakdown is observed in 

NAFLD-affected livers.39-40 Targeted glutaminase therapy 

has shown promise in improving nonalcoholic steato-

hepatitis by facilitating very low-density lipoprotein tri-

glyceride assembly.41 Decreased serum glutamine levels 

correlate with liver fibrosis progression and depressive 

symptoms in NAFLD patients.42-43 Hypoxia-inducible 

factor 2a activation can lead to glutaminolysis by inhibit-

ing YAP phosphorylation and increasing YAP nuclear 

translocation, thereby enhancing NAFLD fibrosis and 

progression.44 Glutamine supplementation has been 

shown to ameliorate intestinal flora dysbiosis and 

NAFLD induced by high-fat diets in mice.45 Our MR 

analysis also identified that 1-linoleoyl-2-arachidonoyl-

GPC (18:2/20:4n6) could lower NAFLD risk. NAFLD 

patients often show reduced levels of sphingolipids and 

phosphocholine in both liver and plasma, compared to 

healthy individuals.46 Phosphatidylcholine, in particular, 

is effective in reducing endotoxin-stimulated tumor ne-

crosis factor-α release in the liver.47 Additional metabo-

lites like vitamin A and deoxycholate, shown to reduce 

 
 

Figure 4. Results of scRNA-seq analysis. (A) UMAP of scRNA-seq; (B) The score of glutamine synthesis in different cells. Hepatocytes 

had the highest score; (C) The proportion of synthesis_high and synthesis_low in NAFLD group and Normal group. The proportion of 

synthesis_high in the NAFLD group was higher than that in the Normal group; (D)-(E) Cell communication of synthesis_high and synthe-

sis_low; (F) Transcription factor activity prediction of synthesis_high and synthesis_low; (G)-(H) KEGG and GO enrichment analysis of 

differentially expressed genes in synthesis_high and synthesis_low. Synthesis_high: hepatocytes with high glutamine synthesis. Synthe-

sis_low: hepatocytes with low glutamine synthesis. NAFLD: non-alcoholic fatty liver disease 
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Figure 5. Machine learning and SHAP. (A) Path diagram of LASSO coefficients of hub genes in the training set. (B) Cross validation plot of LASSO regression. (C) PPI network of hub genes. (D) AUC curves of 

three machine learning methods in the validation set. The AUC of Catboost is 0.83, NGboost is 0.82, and XGboost is 0.86. (E)-(G) Summary Plots, Beeswarm Plots, and Heatmap Plots of Catboost. The gene with 

the largest contribution in Catboost is ASL. (H)-(J) Summary Plots, Beeswarm Plots, and Heatmap Plots of NGboost. The gene with the largest contribution in NGboost is LGALS1. (K)-(M) Summary Plots, 

Beeswarm Plots, and Heatmap Plots of XGboost. The gene with the largest contribution in XGboost is LGALS1. 
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NAFLD risk, were also identified. Notably, vitamin A 

intake inversely correlates with NAFLD risk, and tau-

roursodeoxycholic acid has been shown to moderate in-

testinal inflammation and NAFLD progression in mice.48-

49 Further studies are needed to elucidate the mechanisms 

through which these metabolites affect NAFLD. 

Through the transcription factor prediction analysis of 

synthesis_high and synthesis_low, we found that the pre-

dictions of transcription factors for these two cells were 

completely opposite. Synthesis_high correlates positively 

with transcription factors such as CREB1, ATF4, PPA-

RA, HNF1B, and TCF7L2. CREB1 modulates stearoyl-

CoA desaturase 1, a contributor to hepatic steatosis.50 

ATF4's involvement in endoplasmic reticulum stress and 

autophagy modulation can mitigate hepatic steatosis.51 

PPARA regulates hepatic lipid metabolism.52 HNF1B 

impacts liver fat content in high-fat diet mice, and 

TCF7L2 maintains bile acid and lipid homeostasis via 

gut-liver communication.53-54 Hence, synthesis_high po-

tentially inhibits NAFLD progression through these 

pathways. 

Using SHAP to analyze our ML models revealed 

GLUL, ASL, and LGALS1 as key gene contributors. 

ASL and GLUL were inversely related to NAFLD risk, 

while LGALS1 showed a positive correlation. GLUL 

encodes glutamine synthetase and is vital in detoxifying 

ammonia, glutamate signaling, and various cellular pro-

cesses. Decreased GLUL expression was observed in a 

2,3,7,8-tetrachlorodibenzo-p-dioxin-induced mouse 

NAFLD model.55 GLUL expression in the subcutaneous 

adipose tissue of obese patients was significantly lower 

than that in lean women.56 Butyrate can increase GLUL 

expression to reduce metabolic disorders induced by a 

high-fat diet.57 There are currently no research reports on 

the mechanisms of ASL and LGALS1 in NAFLD. ASL 

encodes a member of the lyase 1 family, which mainly 

catalyzes the reversible hydrolytic cleavage of arginino-

succinate into arginine and fumarate, which is an im-

portant step in the liver's detoxification of ammonia 

through the urea cycle. In other inflammatory diseases, 

ASL upregulation can induce endogenous nitric oxide 

production in intestinal epithelial cells, thereby improving 

epithelial integrity and alleviating colitis and inflamma-

tion-related colon cancer.58 In patients with psoriasis, 

ASL reduces the inflammatory response by increasing 

arginine.59 LGALS1 is a protein-coding gene, and this 

gene product may act as an autocrine negative growth 

factor that regulates cell proliferation. LGASL1 is in-

volved in the apoptosis of liver cancer cells.60 In sum-

mary, these genes are related to the regulation of inflam-

mation or apoptosis, suggesting that they may serve as 

new targets for the diagnosis and treatment of NAFLD in 

the future. 

Our study’s strength lies in leveraging MR analysis to 

estimate causal relationships using genetic variants, min-

imizing confounding biases. Combining multi-omics, 

ML, and SHAP methods, we identified critical NAFLD-

related genes, improving the robustness of our results. 

However, there are some limitations to our analysis. First, 

the GWAS data used in our study mainly involved Euro-

pean populations, which may limit the generalizability of 

our findings to other populations. Second, the validation 

set we chose has a relatively small sample size. Validat-

ing our results on a larger cohort will be the direction of 

our future research. Finally, this study has not yet verified 

the function and mechanism of the results. For example, 

how hepatocytes regulate the anti-inflammatory effect of 

endothelial cells by synthesizing glutamine is also a focus 

of our future research. 

 

Conclusion  

In summary, through the comprehensive analysis of MR, 

multi-omics, ML, and SHAP, we found that some metab-

olites such as glutamine and 1-linoleoyl-2-arachidonoyl-

GPC (18:2/20:4n6) levels can reduce the risk of NAFLD. 

Moreover, we also found three key genes related to 

NAFLD: GLUL, ASL, and LGALS1. This suggests that 

these metabolites and genes may provide new therapeutic 

targets for NAFLD. Future research efforts could be 

aimed at validating these hypotheses and uncovering im-

plications for clinical practice, potentially leading to in-

novative treatments that address the immune and meta-

bolic components of NAFLD. 
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