Omega-3 fatty acid status in Australian omnivores and vegetarians

D Li¹, AJ Sinclair²

¹Department of Food Science, Hangzhou University of Commerce, Hangzhou, China, 310035 ²Department of Food Science, RMIT University, Melbourne, VIC, 3000

Dietary intervention and epidemiological studies have shown that the fatty acid profile of platelet and plasma/serum phospholipid (PL) reflects an individual's type of dietary fat intake (1). It has been suggested that decreased n-3 polyunsaturated fatty acid (PUFA) status are associated with increased risk of cardiovascular disease (2). The aim of this cross-sectional study was to investigate plasma PL fatty acid composition as an index of recent n-3 fatty acid status in Australians. Fifty-one healthy females aged between 21 to 55 years (30 ovolacto vegetarians and 21 omnivores), 103 healthy male aged 22-55 years (43 ovolacto vegetarians and 60 omnivores) were recruited through advertisements in the Melbourne metropolitan area. Each volunteer completed a semi-quantitative food frequency questionnaire and gave a blood sample. Plasma PL were separated by TLC and the fatty acid compositions were determined by the method reported previously (3).

	Male		Female	
Fatty acid	Omnivorous $(n = 60)$	Vegetarians $(n = 43)$	Omnivorous (n = 21)	Vegetarians $(n = 30)$
Total SFA		40.55 ± 1.38	$39.71 \pm 2.42^{**}$	40.36 ± 2.04
Total MUFA	12.06 ± 1.18	12.58 ± 1.24	12.84 ± 1.16	12.51 ± 1.54
18:2n-6	22.37 ± 2.82	$25.91 \pm 3.16^{***}$	23.64 ± 2.72	25.93 ± 3.55 ^{‡‡}
20:3n-6	3.51 ± 0.69	3.30 ± 0.85	3.30 ± 0.60	$2.95 \pm 0.69^{\dagger}$
20:4n-6	10.45 ± 1.75	$9.59 \pm 1.92^*$	9.83 ± 1.71	9.34 ± 2.25
22:4n-6	0.43 ± 0.06	$0.48 \pm 0.11^{**}$	$0.36 \pm 0.07^{***}$	$0.43 \pm 0.08^{\ddagger\ddagger}$
22:5n-6	0.24 ± 0.06	0.25 ± 0.08	0.25 ± 0.08	0.24 ± 0.06
Total n-6	37.00 ± 2.14	$39.53 \pm 2.53^{***}$	37.38 ± 3.21	38.89 ± 3.24 [‡]
18:3n-3	0.19 ± 0.08	$0.27 \pm 0.13^*$	0.23 ± 0.10	0.24 ± 0.10
20:5n-3	1.22 ± 0.21	$1.08 \pm 0.24^{**}$	$0.85 \pm 0.22^{***}$	$0.91 \pm 0.25^{\dagger\dagger}$
22:5n-3	1.22 ± 0.21	$1.08 \pm 0.24^{**}$	3.51 ± 0.54	$2.80 \pm 0.86^{\dagger\dagger\dagger}, \pm\pm\pm$
22:6n-3	3.33 ± 0.75	$2.20 \pm 0.75^{***}$	3.51 ± 0.54	$2.80 \pm 0.86^{\dagger\dagger\dagger}, \pm\pm\pm$
Total n-3	5.76 ± 1.01	$4.25 \pm 0.95^{***}$	5.54 ± 1.00	$4.55 \pm 1.17^{\ddagger\ddagger}$
n-3/n-6	0.16 ± 0.03	$0.11 \pm 0.03^{***}$	0.15 ± 0.03	$0.12 \pm 0.04^{\ddagger\ddagger}$

Values are means \pm SD. Significance of differences: *P < 0.05, **P < 0.01, ***P < 0.001 compared with male omnivorous; *P < 0.05, **P < 0.01, ***P < 0.01, ***P < 0.001 compared with male vegetarians; *P < 0.05, **P < 0.01, ***P < 0.001 compared with female omnivorous.

Compared with vegetarians, both male and female omnivores have a significantly higher proportion of plasma PL 20:5n-3, 22:6n-3, total n-3 PUFA and ratio of n-3/n-6. The 22:5n-3 was significantly higher in male omnivores than female omnivores, which suggests that consumption of red meat was more in male omnivores than in female omnivores since 22:5n-3 is a predominant n-3 PUFA in red meat (4).

References

- 1. Riboli E, Ronnholm H, Saracci R. Biological markers of diet. Cancer Surv 1987; 6: 685-718.
- 2. Berner LA. Roundtable discussion on milk fat, dairy foods and coronary heart disease risk. J Nutr 1993; 123: 1175-85.
- 3. Li D, Sinclair AJ, Wilson A, Nakkote S, Kelly F, Abedin L, Mann N, Turner A. Effect of dietary alpha-linolenic acid intake on thrombotic risk factors in vegetarian men. Am J Clin Nutr 1999; 69: 872–82.
- 4. Li D, Ng A, Mann N, Sinclair AJ. Meat fat can make a significant contribution to dietary arachidonic acid. Lipids 1998; 33: 437–440.

Key words: n-3 polyunsaturated fatty acid, omnivores, vegetarians