Original Article

Content and distribution of flavonoids among 91 edible plant species

Ray-Yu Yang PhD¹, Shou Lin BSc¹ and George Kuo PhD²

¹ Nutrition Unit, ² International Cooperation Office, AVRDC–The World Vegetable Center, Shanhua, Tainan, Taiwan

Flavonoid contents as aglycones (for quercetin, kaempherol, isorhamnetin, luteolin and apigenin) were reported for 115 edible plants (91 species). Plant materials mostly originated in tropical zones were grown and harvested from AVRDC, Taiwan. Acid extraction and HPLC were used as analytical methods. Total flavonoid contents ranged from 0 to 254 mg/100g fresh weight. About 75% of samples were found to contain flavonoids > 0.5 mg/100g with the group mean 33 ± 48 mg/100g. Data for only 30 samples (20 species) in this study are also available (measured as raw vegetables) in the USDA flavonoid database. This study can expand the flavonoid database and contribute to measurement of flavonoid intake, especially for populations consuming tropical and underutilized vegetables.

Key Words: flavonoid, underutilised vegetables, tropical plants

INTRODUCTION

Flavonoids are present in most plant tissues and often in vacuoles.¹ The basic structures of flavonoid molecules are composed of three rings with various substitutions, including glycosylation, hydrogenation, hydroxylaltion, malonylation, methylation and sulfation.^{2, 3} Flavonoids are divided into classes according to their substitutes and oxidation level on the middle ring. The main subclasses and their respective food sources are anthocyanidins (red, purple and blue berries), flavanols (teas, red grapes and red wines), flavones (green leafy species), flavonols (ubiquitous in foods), flavanones (citrus), and isoflavones (soybeans).⁴ In nature, they are present principally as glycosylated, esterified, and polymerized derivatives. Sugar moieties attached to flavonoids increases polarity of the molecules for their storage in plant cell vacuoles.^{2,3}

Flavonoids in plants can function as color definitions and attractants to pollinators and seed dispersers, as antioxidants to protect plants against UV-radiation, as insect feeding attractants in host-species recognition, as signal molecules to facilitate nitrogen fixation, in inducible defense against bacteria and fungal attack; and as bitter or astringent taste attributes to repel birds and other animals.^{1, 5-7} For humans, several health beneficial properties of dietary flavonoids are recognized for their antioxidant and antiproliferative effects which may protect the body from various diseases, such as cancers, cardiovascular disease and inflammatory.^{8, 9}

To better understand the association of flavonoid intake and health outcomes, analyses of flavonoids in plant foods, an intense area of research, clinical and epidemiological studies are required.^{10,11} Although data such as the USDA database for flavonoids enables and facilitates investigations,^{1,12,13} dietary flavonoid intake of was estimated based on US adult population according to food types and social factors such as gender, income and age.¹⁰ However, types and intake amounts of dietary flavonoids vary among populations because different populations consume different kinds and quantities of plant foods.^{14–16}

Over 100 plant species are consumed worldwide as vegetables, but of these, only about 20 species are grown globally and account for most of the vegetables produced and consumed.¹⁷ Flavonoids of popular vegetables have been intensively studied, but little is known about the flavonoid content of under-utilized vegetable species, many of which are partially domesticated, or wild. This study investigated 5 types of flavonoids in 90 edible plants species which mostly originate in tropical or subtropical zones.

MATERIALS AND METHODS Materials

Chemicals and solvents were analytical grade or chromatography grade. Commercial standard compounds were used including quercetin (Sigma-Aldrich), kaempherol, isorhamnetin and lueolin (Fluka, Germany), apigenin, myricetin, hesperetin, nargigenin, and eriodictyol (Extrasynthese, France).

A total of 115 samples representing 91 species (Table 1), including popular and lesser-known plants consumed as vegetables and spices in tropical and sub-tropical areas of Asia were analyzed. Plants were grown during 2003–2006 from fields of the AVRDC – The World Vegetable Center, southern Taiwan. Their antioxidant capacities have been

Manuscript received 9 September 2007. Accepted 3 December 2007.

Corresponding Author: Dr. Ray-Yu Yang, Nutrition Unit, AVRDC-The World Vegetable Center, Shanhua, Tainan, Taiwan, 74199, ROC.

Tel: + 886 6 5837801; Fax: + 886 6 5830009

Email: ry.yang@avrdc.org

~	~			~					
Common name	Scientific name	Part	DM	Que	Kae	Isor	Lut	Api	TF
Ailanthus prickly ash	Zanthoxylum ailanthoides	shoot	27.7	4.8	0.0	0.0	0.0	0.0	4.8
Amaranth	Amaranthus mangostanus	shoot	15.3	18.4	0.0	1.9	0.0	0.0	20.3
Amaranth, Joseph's coat	Amaranthus tricolor	shoot	12.0	0.0	0.0	0.0	0.0	0.0	0.0
Amaranth livid	Amaranthus lividus	shoot	13.5	44	1.8	0.0	0.0	0.0	62
Amaranth nurnle	Amaranthus cruentus	shoot	10.2	0.0	0.0	0.0	0.0	0.0	0.0
Amaranth radraat	Amananthus votuoflorus	shoot	10.2	0.0	0.0	0.0	0.0	0.0	0.0
Amaranin, redroot	Amaraninus retrojiexus	shoot	12.2	9.5	0.4	0.0	0.0	0.0	9.7
Amaranth, spleen	Amaranthus dubius	shoot	11.1	1.3	0.0	0.0	0.0	0.0	1.3
Aromatic turmeric	Curcuma aromatica	stem	31.0	0.0	0.0	0.0	0.0	0.0	0.0
Ashitaba	Angelica keiskei	shoot	20.9	121.7	1.7	0.0	95.0	0.0	219
Bamboo shoot	Dendrocalamus latifloxus	root	7.8	0.0	0.0	0.0	0.0	0.0	0.0
Baobab tree	Adansonia digitata	shoot	22.6	38.2	4.5	0.0	1.6	0.0	44.3
Basil	Ocimum basilicum	shoot	11.9	0.0	0.0	0.0	0.0	0.0	0.0
Daah naunaka	Segmola gowiega	shoot	10.0	0.0	0.0	0.0	7.2	27	0.0
Веасн наирака		Shoot	10.9	0.0	0.0	0.0	7.5	2.7	9.9
Beet	Beta vulgaris	root	8.4	0.0	0.0	0.0	0.0	0.0	0.0
Big-leaved marshweed	Limnophila rugosa	shoot	12.8	0.0	0.0	0.0	0.0	0.0	0.0
Cabbage, white	Brassica oleracea	leaf	6.4	0.0	0.0	0.0	0.0	0.0	0.0
Celery	Apium graveolens	stem	5.0	0.0	0.0	0.0	1.0	2.5	3.4
Chard, dark green	Beta vulgaris	shoot	5.8	0.0	0.0	0.0	0.0	0.0	0.0
Chard light green	Reta vulgaris	shoot	48	0.0	0.0	0.0	0.0	0.0	0.0
Chard red	Beta vulgaris	shoot	6.5	0.0	0.0	0.0	0.0	0.0	0.0
Chand Series	Deta valgaris	shoot	0.5	0.0	0.0	0.0	0.0	0.0	0.0
Chard, Swiss	Beta vulgaris	shoot	0.3	0.0	0.0	0.8	0.0	0.0	0.8
Chard, yellow	Beta vulgaris	shoot	5.5	0.0	0.0	0.0	0.0	0.0	0.0
Cheese weed	Malva parviflora	shoot	19.6	0.0	1.7	0.0	0.0	0.0	1.7
Chili pepper	Capsicum annuum	shoot	12.5	0.0	0.0	0.0	53.0	2.2	55.2
Chinese boxthorn	Lycium chinense	shoot	13.8	5.5	44.6	0.0	0.0	0.0	50.1
Chinese cabbage	Brassica rana	leaf	45	0.0	0.0	0.0	0.0	0.0	0.0
Chinese cedar	Toona sinansis	leaf	20.0	94.5	60.4	0.0	0.0	0.0	155
Chinese feldering	Distant shensis		157	165	10.2	0.0	0.0	0.0	26.9
Chinese foldwing	Dicupiera chinensis	shoot	13.7	10.5	10.5	0.0	0.0	0.0	20.8
Chinese violet	Asystasia gangetica	shoot	12.9	0.0	0.0	0.0	27.7	12.7	40.4
Chinese wedelia	Wedelia chinensis	shoot	17.1	0.0	0.0	0.0	12.8	0.0	12.8
Cluster bean, Guar	Cyamopsis tetragonoloba	pod	12.6	10.4	24.3	0.0	0.0	0.0	34.7
Cluster mallow	Malva verticillata	shoot	11.5	0.0	0.0	0.3	0.0	0.0	0.3
Comfrey	Symphytum officinale	shoot	87	1.1	17	0.0	0.0	0.0	2.8
Coriander	Coriandrum sativum	shoot	87	8.0	0.0	0.0	0.0	0.0	8.0
Courses	Viena unavioulata	laaf	15.0	105	11 4	0.0	0.0	0.0	125
		leal	13.0	105	11.4	0.9	0.0	0.0	123
Cucumber, spiny bitter	Momordica cochinchinensis	shoot	20.0	/8.0	32.0	0.0	0.0	0.0	110
Cucumber, spiny bitter	Momordica cochinchinensis	fruit	14.3	0.0	0.0	0.0	0.0	0.0	0.0
Dandelion	Taraxacum officinale	shoot	13.7	0.0	0.0	0.0	6.2	0.0	6.2
Drumstick	Moringa oleifera	leaf	25.5	89.8	36.3	2.9	0.0	0.0	129
Duck's tongue grass	Monochoria vaginalis	stem	8.8	0.3	0.0	0.0	0.0	0.0	0.3
Duck's tongue grass	Monochoria vaginalis	leaf	16.3	3.1	0.0	0.0	0.0	0.0	3.1
Econlant African	Solanum acthionicum	fruit	0.7	0.2	0.0	0.0	0.0	0.0	0.6
Eggplant, Alfican	Solanum aetniopicum	Iruit	9.7	0.5	0.3	0.0	0.0	0.0	0.0
Eggplant, nakati	Solanum zuccagnianum	leaf	15.7	6.1	29.8	0.0	0.0	0.0	35.8
Eggplant, nakati	Solanum zuccagnianum	fruit	19.9	2.3	1.8	0.0	0.0	0.0	4.1
Econlant, nakati	Solanum successionum	imm	14.6	0.0	0.0	0.0	0.0	0.0	0.0
Eggpiani, nakati	Solunum zuccugniunum	fruit	14.0	0.0	0.0	0.0	0.0	0.0	0.0
Endive	Cichorium endivia	shoot	5.2	0.0	7.6	0.0	0.0	0.0	7.6
Feather cockscomb	Celosia argentea	shoot	11.0	3.8	0.5	0.3	0.0	0.0	4.6
Fishwort	Houttunnia cordata	shoot	18.6	61.2	3.0	0.0	0.0	0.0	64.2
		shoot	10.0	01.2	5.0	0.0	20.0	0.0	20.0
Frog fruit	Phyla noaijiora	shoot	12.9	0.0	0.0	0.0	39.0	0.0	39.0
Garden chrysanthemum	Chrysanthemum coronarium	shoot	9.5	2.9	0.0	0.0	0.0	0.0	2.9
Gynura, white	Gynura oralis	shoot	6.0	7.4	0.9	0.0	0.0	0.0	8.3
Hairy beggarticks	Bidens pilosa	shoot	11.5	6.3	0.0	0.0	0.0	0.0	6.3
India gourd	Cucurbita maxima	shoot	9.1	1.4	2.1	1.1	0.0	0.0	4.6
India gourd	Cucurbita maxima	bud	6.4	1.2	6.4	1.0	0.0	0.0	8.6
India gourd	Cucurbita maxima	fruit	0. 4 0.1	0.0	0.4	0.0	0.0	0.0	0.0
Illula goulu	Cucurona maxima	inunt	8.0	0.0	0.0	0.0	0.0	0.0	0.0
India gourd	Cucurbita maxima	fruit	9.0	0.0	0.0	0.0	0.0	0.0	0.0
Indian cress	Tropaeolum maius	flower	7.9	32.8	1.6	0.0	0.0	0.0	34.4
Indian mulberry	Morinda citrifolia	shoot	183	224	30.1	0.0	0.0	0.0	254
Law gourd	Coocinia curryona	choot	10.5	60	111	0.0	0.0	0.0	110
Ivy gould	Conchange and is	shout	21.0	0.9	111	0.0	0.0	0.0	110
Jule	Corchorus capsularis	snoot	21.8	4.2	15.8	0.0	0.0	0.0	18.1
Jute mallow	Corchorus olitorius	shoot	18.5	59.6	4.3	0.0	0.0	0.0	63.9
Jute, wild	Corchorus trilocularis	shoot	13.9	9.8	0.7	0.0	0.0	0.0	10.5
Kangkong, green stem	Ipomoea aquatica	shoot	8.7	0.2	0.0	0.0	0.0	0.0	0.2
Kangkong, red stem	Ipomoea aquatica	shoot	13.2	7.1	0.0	0.0	0.0	0.0	7.1
Komatsuna	Brassica campestris	shoot	69	04	97	14	0.0	0.0	11.6
	=	511001	0.7	v. i	2.1	4.1	0.0	0.0	

Table 1. Flavonoid¹ contents (mg/ 100g fw) and dry matter (%) of 115 edible plants (91 species).

Lablab	Lablab purpureus	imm pod	11.6	10.9	0.4	1.8	0.0	0.0	13.2
Lablab	Lablab purpureus	pod	14.2	2.1	0.4	0.3	0.0	0.0	2.7
Lettuce	Lactuca sativa	Îeaf	4.3	0.0	0.4	0.0	0.0	0.0	0.4
Madeira vine	Anredera cordifolia	shoot	9.5	0.6	0.0	0.0	0.0	0.0	0.6
Malabar spinach, green	Basella alba	shoot	7.9	0.0	1.4	0.0	0.0	0.0	1.4
Malabar spinach, red	Basella rubra	shoot	7.5	0.0	3.6	0.0	0.0	0.0	3.6
Mizuna	Brassica campestris	shoot	6.6	1.0	8.7	1.9	0.0	0.0	11.6
Mustard	Brassica juncea	shoot	6.9	0.9	14.8	2.7	0.0	0.0	18.4
Mustard, Ethiopian	Brassica carinata	shoot	10.7	1.5	53.6	0.6	0.0	0.0	55.7
New Zealand spinach	Tetragonia tetragonioides	shoot	15.8	2.0	2.0	0.0	0.0	0.0	4.0
Night fragrant flower	Telosma cordata	bud	12.8	0.2	8.7	0.0	0.0	0.0	8.9
Nightshade	Solanum nigrum	shoot	7.8	3.7	1.0	0.0	0.0	0.0	4.7
Nightshade, African	Solanum scabrum	shoot	11.7	23.2	2.0	0.4	0.0	0.0	25.5
Nightshade, African	Solanum villosum	shoot	12.4	18.1	0.9	0.0	0.0	0.0	19.0
Okra	Abelmoschus esculentus	fruit	9.0	15.2	0.0	0.0	0.0	0.0	15.2
Orach	Atriplex hortensis	shoot	10.0	20.3	46.7	1.5	0.0	0.0	68.5
Pak-choi	Brassica chinensis	shoot	4.5	0.5	7.4	1.3	0.0	0.0	9.2
Parsley	Petroselium crispum	shoot	10.7	0.0	1.7	0.0	0.0	71.8	73.5
Penghu senna	Cassia sophora	shoot	19.4	0.0	0.0	0.0	0.0	0.0	0.0
Pilose beggarticks	Bidens bipinnata	shoot	10.8	11.6	0.0	0.0	0.0	0.0	11.6
Princess vine	Cissus sicvoides	shoot	29.9	0.0	0.0	0.0	0.0	0.0	0.0
Rocket-salad	Eruca sativa	shoot	8.3	8.7	36.5	3.9	0.0	0.0	49.1
Rosemary	Rosmarinus officinalis	shoot	30.9	0.0	0.0	0.0	18.4	3.2	21.6
Sawah-flower rush	Limnocharis flava	leaf	14.3	0.0	0.0	0.0	0.0	0.0	0.0
Sesame	Eurca sp.	shoot	13.2	58.8	2.5	4.8	0.0	0.0	66.1
Sesbania, red	Sesbania grandiflora	flower	10.6	10.1	10.3	0.0	0.0	0.0	20.4
Sesbania, white	Sesbania grandiflora	flower	10.6	0.0	22.4	0.0	0.0	0.0	22.4
Smooth joyweed	Alternanthera paronichvoides	shoot	15.2	0.8	0.9	0.4	0.0	0.0	2.1
Sonevsuckle	Lonicera iaponica	bud	18.4	0.0	1.0	0.7	9.0	0.0	10.7
Sorrel	Rumex acetosa	shoot	6.2	5.5	0.0	0.0	0.0	0.0	5.5
Spider plant	Cleome gynandra	shoot	10.9	58.9	4.5	1.0	0.0	0.0	64.3
Spinach, green stem	Spinacia oleracea	shoot	6.5	0.0	0.0	0.7	0.0	0.0	0.7
Spinach, red stem	Spinacia oleracea	shoot	6.7	0.0	0.0	0.8	0.0	0.0	0.8
Staghorn clubmoss	Lvcopodiella cernua	shoot	7.5	0.4	0.0	0.0	0.0	0.0	0.4
Star gooseberry	Sauropus androgynus	shoot	20.4	0.0	58.3	0.0	0.0	0.0	58.3
Sweet bitter leaf	Vernonia hymenolepis	shoot	16.3	0.0	0.0	0.0	24.0	0.8	24.7
Sweet potato, green	Ipomoea batatas	shoot	14.6	0.0	1.4	0.0	0.0	0.0	1.4
Sweet potato, pink	Ipomoea batatas	shoot	11.7	10.1	1.4	0.0	0.0	0.0	11.4
Sweet potato, purple	Ipomoea batatas	shoot	14.6	42.3	2.3	0.0	0.0	0.0	44.6
Sweet potato, taro flavor	Ipomoea batatas	shoot	11.9	0.0	0.0	0.0	0.0	0.0	0.0
Tomato	Solanum esculentum	fruit	5.2	0.4	0.0	0.0	0.0	0.0	0.4
Tomato, cherry	Solanum esculentum	fruit	6.8	0.0	0.0	0.0	0.0	0.0	0.0
Vegetable soybean, green	Glycine max	seed	28.1	0.0	0.7	0.0	0.0	0.0	0.7
Verticillata pennywort	Hvdrocotvle verticillata	shoot	11.8	95.5	11.4	0.7	0.0	0.0	108
Vietnamese coriander	Polvgonum odoratum	shoot	40.6	118	25.5	0.0	0.0	0.0	144
Water cress	Nasturtium officinale	shoot	6.5	2.4	35.1	0.0	0.0	0.0	37.5
Water mint	Mentha aquatica	shoot	17.5	0.0	0.0	0.0	0.0	0.0	0.0
Wedelia	Wedelia trilobata	shoot	15.4	0.5	11.4	0.0	0.0	0.0	11.9
Weed passion flower	Passiflora foetida	shoot	13.8	0.0	0.0	0.0	0.5	1.5	2.0
Unknow	Hydrolea zevlanica	shoot	18.3	2.2	7,9	0.0	0.0	0.0	10.1
	,	5.1000	10.0			0.0	0.0	0.0	10.1

Table 1. Flavonoid	¹ contents (mg/	100g fw) and dr	y matter (%) of 115 edible	plants (91 s	pecies). (cont.)
--------------------	----------------------------	-----------------	-------------	-----------------	--------------	------------------

Que: quercetin; Kaem: kaempherol; Isor: isorhamnetin; Api: apigenin; Lut: luteolin; TF: total flavonoids; imm: immature; value of "0.0" :below detection limit (<0.05 mg/100g).

reported previously.¹⁸ About 2 kg of edible portion of each fresh sample were collected, washed, cut into 5 cm long and well mixed. Exact 100 g of the cut samples were frozen at -20°C for 4 hr, vacuumed dried for < 2 days, ground into fine powder, and stored at -70 °C for subsequent analyses.

Hydrolysis, extraction, and recovery test

Nine flavonoid aglycones were determined in the frozen samples after hydrochloric hydrolysis of the flavonoid derivatives. Briefly, 100 mg sample placed in a 20 mL tube containing 10 mg ascorbic acid dissolved in 5 mL of acidified methanol (1.2 M HCl) was flushed with N_2 air

for 30 sec and then refluxed at 80 °C for 2 h. After cooled down to room temperature, the sample was sonicated for 10 min and centrifuged at 4000g for 10 min. Supernatant, approximately 2 mL was taken and filtered through 0.2 μ m syringe filter (Millipore, Bedford, MA). The filtrate was kept at 10°C for HPLC analyses within 12 h.

Three vegetables namely white cabbage, parsley, and celery without intrinsic quercetin were used with three replications to determine quercetin recovery rate from the acid extraction. Appropriate amount of rutin equivalent to 25 ppm in extraction solution was also added prior to acid hydrolysis.

HPLC analyses and recovery test

Flavonoid aglycons were separated using the HPLC system equipped with a Waters 2695 separation module and an Agilent Zorbax ODS column (3.5μ m, 4.6×150 mm) at 35 °C using a gradient from 0 – 15 min, 1 to 25% acetonitrile (ACN) in 1% aqueous formic acid (FA); and 15 – 50 min, 25% – 40% ACN in 1% aqueous FA at a flow rate of 0.7 mL/min. The column elute was monitored using a Waters 2996 photo diode array detector (250 – 700 nm). Identification and quantification of individual flanonoid was carried out using commercial standards.

RESULTS AND DISCUSSION

In this study, contents of flavonoids including 4 flavonols (quercetin, kaempherol, isorhamnetin, myricetin), 2 flavones (apigenin, luteolin) and 3 flavanones (eriodictyol, hesperetin and naringenin) in 115 edible plants (90 species) were determined as aglycons. However, only values for five flavonoids (quercetin, kaempherol, isorhamnetin, apigenin luteolin) are reported in Table 1. Myricetin, eriodictyol and naringenin were not detected in all the plant samples, due to that they were sensitive to acid hydrolysis¹⁴ and rarely occurred in vegetables.⁴ Quercetin recovery from extrinsic rutin in selected vegetables after hydrolysis were 81.4 ± 1.7 % in extraction solution, $82.8 \pm$ 8.6 % in celery, 69.5 ± 3.9 % in parsley, and 62.3 ± 3.7 % in cabbage. A higher rate of recovery corresponded to lower soluble solid contents of vegetable extracts measured by refractometer. Values in Table 1 were not adjusted by the recovery rate due to various rate in vegetables were found.

Among the 115 samples, 86 samples contained at least one type of flavonoid (>0.5 mg). Maximums, group means and standard deviations are presented in Table 2. More than 50% of plants contained either or both quercetin and kaempherol.

For most of the plant species analysed in this study, this is the first report of their flavonoid contents. Only 30 samples (20 species) in this study have previously been reported (measured as raw vegetables) in the USDA flavonoid database.⁴ In our study, leaves of Indian mulberry (254 mg), ashitaba (218 mg), Chinese cedar (155 mg), Vietnamese coriander (144 mg), moringa (129 mg) (Table 1) have the highest content of for total flavonoids. These plants were rich in quercetin and kaempherol, except for ashitaba, which was high in quercetin and luteolin. The highest values reported in the USDA database

Table 2. Flavonoid content ranges and group meansmg/100g fresh weight)

	Que	Kaem	Isor	Lut	Apig	Total			
Content $\geq 0.5 \text{ mg/100g}$									
Max	224	111	9	95	72	254			
Mean	27	15	2	23	12	33			
SD	42	21	2	27	24	48			
n	59	57	20	13	8	86			
Content $< 0.5 \text{ mg}/100 \text{g}$									
n	95	58	56	107	102	29			

Que: quercetin; Kaem: kaempherol; Isor: isorhamnetin; Api: apigenin; Lut: luteolin

for raw vegetables are capers (*Capparis*, 493 mg), parsley (237 mg), lovage leaves (*Levisticum*, 177 mg), dill weed (*Anethum graveolens*, 110 mg), and dock leaves (*Rumer spp*, 102mg). Quercetin was the major type of flavonoid, except for parsley which is rich in apigenin.

Thirteen samples in this study were found to contain flavones as the dominant flavonoid. Among them, parsley (72 mg), chili pepper (55 mg), Chinese violet (41 mg), and frog fruit (39 mg) were the highest (Table 1). The flavonoid contents of parsley and chilli pepper are also reported in USDA database.⁴ Similar to our results, apigenin was the dominant type of flavonoid in parsley; however a higher mean value (226 mg) was reported in the database. Values for various pepper varieties are also complied in the database in which quercetin and luteolin values ranged from 0.4 to 31 mg in total. These values are lower than our data.

In several cruciferous vegetables listed in the database except red cabbage, kaempherol and quercetin were the dominant flavonoids, ranging from less than 6 mg in most Brassica samples to 34 mg in Chinese kale.⁴ In our study, seven Brasssica species were collected. Our results show that kaempherol was the major flavonoid ranged from 0.0 mg in Chinese cabbage and white cabbage to 56 mg in mustard (Table 1).

In addition to flavonols and flavones, anthocyanins, flavan-3-ols, flavanones, theaflavin and proanthocyanindins are major flavonoids in plant-sourced food. Samples in our study with visible red colour such as red chard, African eggplant, red kangkong, lablab pods, and red sesbania flower will be tested for anthocyanin contents later. Flavan-3-ols and flavanones are known to be sensitive to acids, thus values of their contents in different plant species were not included in our study using an acid extraction method. However, using the non-acid direct extraction method, flavan-3-ols and flavanones were not detected in the selected vegetables, except for tomato that contained narigenin.¹⁹ Theaflavins are flavonoids found mostly in teas. According to USDA database for proanthocyaninds⁴, proanthocyanindin concentration was insignificant in the selected vegetables.

Data in this study provide additional information to the flavonoid database and contribute to studies on health benefits from flavonoid intakes, especially for populations consuming tropical and underutilized vegetables.

ACKNOWLEDGMENT

This study was partially supported by GTZ/BMZ, Germany.

AUTHOR DISCLOSURES

Ray-Yu Yang, Shou Lin and George Kuo, no conflicts of interest.

REFERENCES

- Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites), In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry & Molecular Biology of Plants. Rockville, MD, USA: American Society of Plants Physiologists, 2000;1250-1318.
- Beecher GR. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J Nutr 2003;133:3248S-54S.

- Onyilagha JC, Grotewold E. The biology and structural distribution of surface flavonoids. Recent Res Devel Plant Sci 2004;2:53-71.
- 4. http://www.ars.usda.gov/nutrientdata
- Wildman REC. Nutraceuticals: A brief review of historical and teleological aspects, In: Wildman REC ed. Handbook of Nutraceuticals and Functional Foods. CRC press: Boca Raton, FL, 2001;1-12.
- 6. Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 2002;5: 218-23.
- Winkel-Shirley B. Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126:485-93.
- Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:67-751.
- Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418-25.
- Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr. 2007;137: 1244-52.
- Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. J Nutr. 2006;136:2588-93.

- 12. Kinoshita T, Lepp Z, Chuman H. Construction of a novel database for flavonoids. J Med Invest. 2005;52:291-2.
- Peterson J, Dwyer J. An informatics approach to flavonoid database development. J Food Compos Anal. 2000;13:441-54.
- 14. Huang Z, Wang B, Eaves DH, Shikany JM, Pace RD. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chem. 2007;103:1395-1402.
- 15. Arabbi PR, Genovese MI, Lajolo FM. Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian population. J Agirc Food Chem. 2004;52:1124-31.
- Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49:3106-12.
- Siemonsma JS and Kasem P. PROCEA Plant resources of South-East Asia 8 – Vegetables, 2nd Ed. Indonesia: Prosea Foundation, 1996.
- Yang RY, Tsou SCS, Lee TC, Wu WJ, Hanson PM, Kuo G, Engle LM and Lai PY. Distribution of 127 edible plant species for antioxidant activities by two assays. J Sci Food Agri. 2006;86:2395-2403.
- Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, Gebhardt S. Flavonoid content of U.S. fruits, vegetables and nuts. J Agric Food Chem. 2006;54:9966-77.