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ABSTRACT

Background and Objectives: Alzheimer’s disease (AD) is the most prevalent form of
dementia in older individuals. Ferroptosis, a programmed cell death characterized by iron-
dependent membrane lipid peroxidation is implicated in AD pathology. Increasing evidences
have shown that plant-derived dietary antioxidants exhibit their anti-ferroptosis activity.
However, the anti-AD mechanism of plant-derived dietary antioxidants remains elusive.
Therefore, this review aims to explore the anti-AD effects of plant-derived dietary
antioxidants via ferroptosis regulation. Methods and Study Design: This review examines
the available published data from all peer-reviewed original research articles on following
topics: ferroptosis mechanisms, the role of ferroptosis in AD, the preclinical or clinical studies
of plant-derived dietary antioxidants in cell, animal models of AD-or patients with AD.
Results: Ferroptosis is involved in AD pathology. Importantly, we clarify why
docosahexaenoic acid (DHA)-rich brain phospholipids.-are extremely- susceptible to lipid
peroxidation. In addition, plant-derived dietary antioxidants such as vitamin E (a-tocopherol),
resveratrol, epigallocatechin-3-gallate (EGCG), curcumin, quercetin, baicalein and alpha-
lipoic acid (ALA) show the anti-AD effects in preclinical AD models and prevent decline of
cognition in healthy elderly population. Clinical studies show that ALA prevents decline of
cognition of AD patients although most plant-derived dietary antioxidants exhibit conflicting
results. Conclusions: It suggests that a plant-based diet may lead to potential health benefits
in preventing cognitive decline in healthy elderly population. In regard to ALA, further
clinical studies are highly recommended to evaluate its therapeutic potential that could
optimize its dietary intake for prevention and alleviation decline of cognition of patients with
AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a most common insidious and chronic neurodegenerative brain
disease and the leading prevalent cause of dementia in the elderly, accounting for
approximately 70% of all dementia cases globally. The World Health Organization (WHO)
notes that the number of people living with dementia globally is expected to rise from 55
million in 2019 to 139 million in 2050. The economic costs of dementia are also expected to
more than double from US$1.3 trillion per year in 2019 to $2.8 trillion dollars by 2030.%2 In



most cases, AD is characterized by progressive memory impairment and cognitive decline,
affecting behavior, speech, visual-spatial orientation, and fine motor system. Pathologically,
AD is mainly characterized by brain atrophy, extracellular senile plaques composed primarily
of abnormally folded amyloid-B (AB) peptide, intraneuronal neurofibrillary tangles made up
of hyper-phosphorylated microtubule-associated protein tau, and loss of neurons and
synapses.®® Other factors are also implicated in exacerbating neurodegeneration processes
such as altered metal homeostasis, neuroinflammation, oxidative stress, lesions of cholinergic
neurons.® ” Generally, a complex combination of behavioral, genetic, and environmental risk
factors is proposed as etiologies of AD,%° the real cause of AD, however, still a controversy,
but ageing is the leading risk factor for its onset.!!

AD is a slowly progressive and irreversible brain disorder. Previous‘therapeutic strategies
have focused mainly on reducing the levels of AP and hyperphosphorylated tau, the two key
components of the amyloid cascade.’® Small-molecule drugs such as p-secretase converting
enzyme inhibitors or anti-amyloid-3 monoclonal antibodies have been designed to inhibit AP
production or aggregation, enhance A clearance or ‘neutralize neurotoxic AP
oligomers/plaques.’® ** Tau aggregation inhibitors.or antibodies were specifically designed to
block larger intracellular tau aggregation and toxicity.’>'" Unfortunately, to date, none of
these drugs have been shown to slow the progression of AD with the cost of several billion
dollars and decades of research, shedding mounting doubt on the validity of amyloid cascade
hypothesis, the long postulated pathological model of AD. 1° Given a series of failed clinical
trials focusing on lowering pathological amyloid and tau, new targets or aspects of
neurodegeneration in AD are of great interest and urgently need to be explored to find
potential disease-modifying therapeutic strategies®® 2! Of particular interest is the potential
role of ferroptosis in the pathogenesis of AD, a recently identified mode of nonapoptotic
regulated cell death driven by iron dependent accumulation of lipid hydroperoxides.?* In
recent years, mounting evidence suggests that ferroptosis has been implicated in AD
progression and targeting ferroptosis might provide new therapeutic opportunities in treating
AD.?>2 The term ferroptosis was coined by Dixon et al. in 2012, although the toxicity of iron
and lipid peroxidation was reported half century ago. Ferroptosis is morphologically,
biochemically and genetically distinct from apoptosis, autophagy, pyroptosis and other types
of regulated cell death.?? Cells undergoing ferroptosis usually exhibit necrosis-like
morphological changes including a loss of plasma membrane integrity, rupture of cell outer-
membranes, swelling of cytoplasmic organelles accompanied by shrunken mitochondria,

reduced or absent mitochondrial crista and outer mitochondrial membrane rupture without



apoptosis features such as chromatin condensation and apoptotic body formation.?®-3
Although the exact mechanism of ferroptosis is not well understood, it is of note that
ferroptosis is tightly linked to iron dyshomeostasis, peroxidation of membrane long chain
polyunsaturated fatty acids (PUFA) and loss of antioxidant defense.?* 3233

Growing evidence has shown that certain dietary compounds, especially antioxidants play
a beneficial role in brain aging and neurodegenerative disease. In this review, on one hand, we
summarize the molecular mechanism of ferroptosis and its role in AD pathology. In another
hand, we summarize the neuroprotective activities of vitamin E, resveratrol, epigallocatechin-
3-gallate (EGCG), curcumin, quercetin, baicalein and ALA. We delve into the efficacy of
these natural antioxidants to counteract neuronal dysfunctions underlying AD pathogenesis.

MATERIALS AND METHODS

Regarding mediation analysis, the current approach used by the authors couldn‘t get the
accurate estimates of direct and indirect effects. Af the authors do not plan to conduct
additional analyses following proper mediation analysis procedures, they should avoid using
terms such as “two-step approach” or drawing conclusions.related to mediation effects in the

manuscript.

RESULTS

Regulatory mechanisms of ferroptosis

Iron metabolism in ferroptosis

Different from apoptosis, necrosis, autophagy and other modes of regulated cell death,
ferroptotic cell death is strictly dependent on iron availability.3*

Iron usually exists: in oxidized ferric status (Fe**) and reduced ferrous status (Fe®"),
respectively.. Extracellular Fe** binds to transferrin, an extracellular glycoprotein and was
recognized and- delivered into the cells by transferrin receptor (TFRC), a type II
transmembrane glycoprotein (Figure 1).° After absorption by TFRC, Fe** is reduced to Fe?*
by metalloreductase (STEAP3) in the endosome, and then released into cytosol through
divalent metal transporter 1 (DMT1), a mammalian transmembrane proton-coupled metal-ion
transporter.36 3" Cellular labile iron pool (LIP) is predominantly composed of ferrous iron and
maintained within a relative stable status (iron homeostasis) through orchestrated regulation
of iron uptake, utilization, storage and export.® % For example, excessive build-up of LIP can
be regulated by transport out of the cell by ferroportin, the only known cellular iron exporter



or stored mostly as inert iron in ferritin cages. whereas autophagic degradation of ferritin
(ferritinophagy) by nuclear receptor coactivator 4 (NCOA4) releases iron stored in ferritin
into LIP. %0 In addition, haeme-oxygenase 1 (HO-1)-mediated haeme degradation also
contributes to LIP contents.*! 42

Abnormal intracellular iron distribution or iron overload in cells can trigger lipid
peroxidation either enzymatically or nonenzymatically via the Fenton reaction (Figure 1).
Excess iron initiates Fenton reaction by catalyzing PLOOHSs, an essential free radical
precursor to generate the free radicals PLOs and PLOOe, and driving the damaging
peroxidation chain reaction.**#* In iron-dependent enzymatic lipid peroxidation, iron acts as
an essential cofactor for enzymes that directly catalyze the peroxidation of lipids (such as
iron-containing dioxygenase, lipoxygenase and oxidoreductase).*®

Lipid peroxidation drives ferroptosis
It is well known that acyl-coenzyme A (CoA) synthetase long. chain family member 4
(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) are two key membrane-
remodelling enzymes mediating the synthesis_of PUFA-(phospholipids) PLs.*® ACSL4
catalyses the ligation of coenzyme A (CoA) groups with free PUFAs, such as arachidonic,
adrenic and linoleic acids to generate PUFA-C0As.47 These modified PUFAs can be re-
esterified and integrated into membrane PLs by LPCAT3 to form PUFA-PLs. Acetyl-CoA
carboxylase (ACC) is a biotin-dependent enzyme and catalyzes the carboxylation of acetyl-
CoA to form malonyl-CoA, which is an intermediate in the de novo synthesis of long-chain
fatty acids and plays a pivotal rolein fatty acid metabolism.*8:4°

Lipid peroxidation process is shown in Figure 1. Membrane PUFA-PLs are highly
susceptible to lipid peroxidation because of their reactive bis-allylic hydrogens. 50 They may
undergo lipid peroxidation via non-enzymatic autoxidation driven by iron-mediated Fenton
reaction and iron-containing lipoxygenases, particularly 12/15 lipoxygenases or
oxidoreductase cytochrome P450,° 52 although conflicting results about the role of
lipoxygenases in ferroptosis were reported.>® Lipid peroxidation generally consists of three
phases: initiation, propagation and termination.® In the initiation phase, reactive oxygen
species including the hydroxyl (OHs) radicals converting from H>O. via Fenton reaction,
reactive nitrogen species and reactive lipid species remove a bisallylic hydrogen atom from
the membrane PUFA to form a phospholipid radical (PL¢).%> ¢ In the propagation phase, the
formed phospholipid radical (PLe) rapidly reacts with molecular oxygen to form a
phospholipid peroxyl radical (PLOOe). PLOOQe then reacts with another PUFA to generate



phospholipid peroxide (PLOOH) and a new PLs.>" Of note, lipoxygenases or oxidoreductase
has been implicated in catalyzing PL to form PLOOH. If the toxic PLOOH is not reduce to a
nontoxic phospholipid alcohols (PLOH) by glutathione peroxidase 4 (GPX4), PLOOH and
free radicals, especially lipid free radicals such as PLOOe and alkoxyl phospholipid radicals
(PLO- ) will react with PUFA-PLs to produce more PLOOHS.®® *® This chain reaction may
trigger the breakdown of membrane integrity, membrane permeabilization, and ultimately
rupture of organelle and/or cell membranes.®® ® This termination step will occur by lack of
lipid substrates or endogenous antioxidant enzymes such as GPX4 or antioxidants such as
vitamin E.

Unlike PUFA, ACSL3-dependent activated phospholipid-monounsaturated. fatty acids
(MUFA-PL) such as oleic acid-phosphatidylethanolamine and" palmitoleic acid-
phosphatidylethanolamine have been demonstrated to suppress lipid peroxidation and
ferroptosis by displacing PUFA from PLs in cellular membranes.%2-%

Collectively, the type and abundance of long chain fatty acids (LCFAs) in membrane PLs
are two determinants of ferroptosis vulnerability of cells, highlighting the complexity of

ferroptosis induction at the cellular levels.

The system Xc-/GSH/GPX4 axis: the primary defense system against ferroptosis
GPX4, a selenoprotein, belongs to the GPX protein family and is the primary anti-ferroptosis
enzyme capable of reducing potentially toxic PLOOHs to non-toxic PLOH using two
molecules of glutathione (GSH) (Figure 1).%° Reduced GSH is a thiol-containing tripeptide
consisting of glycine, glutamate and cysteine, with cysteine being the rate-limiting for the
biosynthesis of GSH. Extracellular cystine (an oxidized dimeric form of cysteine) is
transferred into cytosal via cystine-glutamate antiporter, known as system Xc- and reduced to
cysteine. System Xc-"is a heterodimeric protein complex composed of the 4F2 cell-surface
antigen heavy chain (4F2hc or SLC3A2) and amino acid-transporter solute carrier family 7
member 11 (SLC7A11 or xCT).% ¢

Cystine depletion via deprivation of cystine from culture media or pharmacologically
inhibiting XCT with erastin or other ferroptosis inducers (FINs) will lead to GSH depletion
and indirectly inactivate GPX4, ultimately inducing ferroptotic death.®® % In addition, GPX4
can be directly inactivated using Ras-selective-lethal-3 (RSL3), which covalently modifies
GPX4 active site selenocysteine.”® 7 Therefore, the system Xc-/GSH/GPX4 axis is
considered the main cellular defense pathway against ferroptosis.’?



GPX4-independent ferroptosis-defense systems

It is initially believed that GPX4 was the only ferroptosis gatekeeper until ferroptosis
suppressor protein 1 (FSP1; also known as AIFM2) is found to defend against ferroptosis
independent of GPX4.”® * FSP1 localizes on the plasma membrane where it functions as an
NAD(P)H-dependent oxidoreductase that reduces ubiquinone (CoQZ10) (or its partially
oxidized product semihydroquinone) to ubiquinol (CoQH2) (Figure 1). Ubiquinol can trap
lipid peroxyl radicals to terminate lipid autoxidation, thereby suppressing lipid peroxidation
and ferroptosis. Recent studies identified that GTP cyclohydrolase 1 (GCH1) is another
ferroptosis regulator via its metabolic products tetrahydrobiopterin (BH4/THB) (Figure 1).”
It is proposed that GCH1 protects phospholipids containing two PUFA tails against oxidative
degradation by generating as a direct radical-trapping antioxidant as well as being involved in
ubiquinone biosynthesis.” "® Dihydroorotate dehydrogenase (DHODH)-CoQH2 system is a
recently revealed defense against ferroptosis that acts in parallel to mitochondrial GPX4 (but
independently of cytosolic GPX4 or FSP1) to inhibit ferroptosis in the mitochondrial inner
membrane by reducing ubiquinone to ubiquinol to detoxify mitochondrial lipid peroxides.”” In
addition, mevalonate pathway including isopentenyl.-pyrophosphate (IPP), farnesyl
pyrophosphate (FPP), squalene, CoQ10, and cholesterol is involved in regulating ferroptosis
(Figure 1). GPX4 synthesis requires a unique selenocysteine tRNA (Sec-tRNA). IPP, the
precursor of squalene and CoQ10 is a limiting substrate for enzymatic isopentenylation of
Sec-tRNA and essential for GPX4 synthesis.”8-8°

The emerging role of ferroptosis in AD

AD is a multifactorial neurodegenerative disease and has complex etiopathogenesis. Existing
evidence suggests that ferroptosis is involved in AD. Iron dyshomeostasis, enhanced lipid
peroxidation, and decreased GSH/GPX4 activity in AD are described below.

Iron dyshomeostasis in AD

Elevated iron was first shown in the brains of AD patients in 1953.8! Since then, increasing
subsequent studies confirmed the association between iron accumulation and the development
of AD.®2 8 |ron elevation in the brain with ageing was accompanied by cognitive decline
prior to disease.®* It was also found that cortical iron is strongly associated with the rate of
cognitive decline of AD patients.2> Mechanically, iron deposition in the brain upregulates ApB
precursor protein (APP) expression.®® APP is a transmembrane glycoprotein which mediates

the production of AP through amyloidogenic processing. Neuronal APP is normally processed



by a-secretase and y-secretase in a non-amyloidogenic pathway. However, neurotoxic Af
peptide 1s generated when APP is cleaved by sequential action of B-secretase and y-secretase.
Excess intracellular iron upregulates the expression of APP as well as modulates a-secretase-
mediated cleavage of APP.88° Further, iron overload induces cognitive impairments by
increasing aggregation of AP and tau, and hyper-phosphorylation of tau,?°2 whereas amyloid
plaque formation in turn may induce free iron and ferritin accumulation in the cerebral cortex
area in APP/PS1 transgenic mice.*® Tau accumulation in NFTs was also found to induce haem
oxygenase-1lexpression, which releases ferrous iron by the catabolism of haem and exacerbate
oxidative stress.**% In addition, iron chelators such as desferrioxamine, deferasirox and
deferiprone, function as ferroptosis inhibitors and have shown potential in pre-clinical and
clinical AD models, which indirectly verify that iron and ferroptosis are involved in the
pathology of AD.%" 9%

Brain PLs are extremely susceptible to lipid peroxidation in AD
Different organelles have highly distinct lipid compaositions, of all organs of the body, human
brain is known to be a lipid-dense organ, second.only to adipose tissue. The dry weight of
human adult brain is about 60% lipids, which is composed mostly of glycerophospholipids
and sphingolipids, as well as a great pool. of cholesterol and cholesterol metabolites.
Glycerophospholipids and sphingolipids, two important PL subcategories, are key
components of all cell membrane, especially for membrane-rich tissue such as grey matter
and white matter.99 PUFA derivatives account for approximately one-third of PLs.!® The
distribution of PUFA in brain PLS is tissue-specific, with white matter abundant in MUFA,
while gray matter abundant in PUFAs. Cellular PUFAs are categorized into n-6 PUFA and n-
3 PUFA hased on the position of the first double bond counting from the methyl carbon atom.
The most abundant PUFASs incorporated into cell membrane PLs in mammalian brain gray
matter is DHA (22:6n-3) with the longest side-chain and highest degree of unsaturation, and
arachidonic acids (AA, 20:4n-6), one of n-6 PUFA.1% Interestingly, the composition of PUFA
of human brain tissue is characterized by age-specific changes. AA methyl esters is roughly
equal to DHA methyl esters in cerebral cortex ethanolamine glycerophospholipids in the one-
month old infant (16.5% AA and 16.1% DHA). DHA increases with age accompanied by
corresponding decrease of AA, and the ratio of DHA/AA is close to approximately 4:1 in 82
year old male (10.3% AA and 33.9% DHA).1%

PUFA are the most susceptible to peroxidation due to their high degree of unsaturation and
play a key role in ferroptosis. Compelling evidence has shown that phosphatidylethanolamine



(PE), which contains oxidized forms of AA and adrenic acid (AdA, 22:4n-6) but not DHA is
proved to be a key mediator of ferroptotic cell death in cells.®® It was largely explained by
cell-specific differences in lipid profiles. Cancer cells, the cell mode most used in ferroptosis
study, are abundant in AA but deficient in DHA. For example, AA levels of membrane PL in
ferroptosis sensitive B16 melanoma cells are 5 times higher than DHA levels.!®® In
neuroblastoma cells in which DHA levels are slightly less than AA levels, other PUFA-
containing PLs, including various diacyl and ether-linked PLs, are oxidized and ferroptotic
cell death is induced.1%*

Recent evidence shows that DHA with highly unsaturated structure (six double bonds) is
most susceptible to lipid peroxidation and implicated in ferroptotic cell death. For example,
Doll et al. reported that n-6 PUFA such as 5,8,11-eicosatrienoic acid (5,8,11-ETE), 8,11,14-
ETE, AA, AdA induced cell death with 5- to 10-fold greater efficacy than n-3 PUFASs such as
11,14,17-ETE, eicosapentaenoic acid except DHA.1% In-acidic tumor environment, DHA is
peroxidized and ferroptotic cell death is induced in cancer cells.!°® Our unpublished data also
showed that cell apoptosis and necrosis are induced by lipid peroxidation of free unesterified
DHA, whereas ferroptotic cell death is induced when DHA is incorporated into membrane
PLs and peroxidized. In line with our finding, Ou et al. reported that low-density lipoprotein
nanoparticles reconstituted with DHA induce ferroptosis in hepatocellular carcinoma.l%’ It is
largely explained by the reason that unesterified DHA enters the cell by diffusion or
facilitative transporters and is peroxidized before being integrated into membrane PLs,
whereas low-density lipoprotein nanoparticles directs DHA along the endolysosomal pathway
in the cell and prevent it being peroxidized before being incorporated into membrane PLs,
which explains different cell death types induced by different forms of DHA. Overall, human
brain tissues abundant in DHA and AA are most susceptible to lipid peroxidation and
ferroptosis.

The dysfunction of the GSH/GPX4 axis in AD

Several lines of evidence suggest that altered GSH contributes to various aging-related
neurodegenerative disorders, including AD.X%® The neuroprotective role of GSH has been
evidenced in various in vitro and in vivo studies.!® In blood samples and brain of animal
model of AD, decreased GSH and increased glutathione disulphide (GSSG), the oxidized
form of GSH, were observed.!® Bemergo et al. reported that a decrease in erythrocyte GSH
levels and GSH/GSSG ratio in AD and mild cognitive impairment (MCI) patients compared
with their control subjects.*'! Liu et al. also reported that GSH concentration was significantly
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decreased in red blood cells from male AD patients as compared with that from age-matched
male controls, however, no significant difference of GSH levels in the plasma, white blood
cells, or red blood cells between female AD patients and female controls.!'? Importantly, GSH
levels were significantly decreased in mitochondrial and synaptosomal fractions of AD and
MCI patients compared to age- and postmortem interval-matched controls.!*® In another
study, reduced GSH levels were observed in the hippocampus and frontal cortex brain regions
in AD and MCI patients with in vivo magnetic resonance spectroscopy.'* These studies
suggest that GSH, especially brain GSH concentration is a biomarker for MCI and AD.

GPX4 is the most widely expressed isoform in brain tissue and found predominantly in
neurons of the cerebellum, hippocampus and hypothalamus, suggesting that GPX4 may play a
protective role against neurodegeneration.!*> Rocha et al. found that polymorphisms in GPX4
are significantly associated with episodic memory and AD in.a South Brazilian population.t®
In an in vivo study, Hambright et al. reported that Gpx4BI1KO mice with conditional deletion
of GPX4 in forebrain neurons exhibited deficits in-spatial learning, memory function and
hippocampal neurodegeneration. Markers associated with ferroptosis were observed in the
cognitively impaired Gpx4BIKO mice. The neurodegeneration in Gpx4BIKO mice was

ameliorated by small molecular ferroptosis inhibitors such as ferrostain-1 and liproxstatin-
1.117

Modulation of ferroptosis and their clinical effects of plant-derived dietary antioxidants

The above discussion supports” that ferroptosis is implicated in neurodegeneration of AD.
Therefore, targeting ferroptosis ‘could be a promising therapeutic strategy for AD. In recent
decades, increasing plant-derived dietary antioxidants with diverse biological activities have
been gained tremendous attention due to their excellent health benefits. However, there is a
general reluctance to-launch new clinical trials based on plant-derived dietary antioxidants
due to the concerns about their safety, efficacy, and animal mode of action. We then focus on
the plant-derived dietary antioxidants which have been studied to assess their
pharmacological potential in AD in clinical trials and summarize their anti-AD mechanisms
via ferroptosis and their efficacy in treating AD (Table 1 and 2).

Vitamin E

Vitamin E (VE), is the most potent lipophilic chain-breaking antioxidant fat-soluble vitamin
consisting of eight different isoforms, including a-, B-, y-, d-tocopherol, and a-, B-, y-, o-
tocotrienol. a-Tocopherol, the most common isoform of VE possesses the most potent
biological activity and is directly implicated with human VE deficiency symptoms 118-120.
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VE, which is predominantly synthesized in plants, is rich in plant products such as nuts,
seeds, plant oils and leafy green vegetables. Considering that vitamin E is exclusively
synthesized by photosynthetic organisms, therefore, plant-based food is the primary source of
vitamin E.'?' 122 VE is able to pass through the blood-brain barrier and accumulate at
therapeutic levels in the areas of the central nervous system, where it functions as a free
radical scavenger to prevent lipid peroxidation of polyunsaturated fatty acids in the
phospholipid bilayer of cells and lower B-amyloid deposition.123 124

Several pre-clinical studies have been suggested that VE is involved in regulating
ferroptotic cell death. Gpx4BIKO mice fed a VE-deficient diet exhibited hippocampal
neurodegeneration and locomotor dysfunction, compared with VE-supplemented mice.!!’ In
another in vitro study, Ren et al. found that treatment with VE significantly inhibited
irradiation-mediated ferroptosis of murine hippocampal neuron HT-22 cells and promoted
their survival.!?® Zhu et al. also reported that VE inhibited ferroptosis.and promoted neural
function recovery and tissue repairment in rats with spinal cord injury via downregulating 15-
lipoxygenase.'?®® Hinman et al. found that alpha-tocopherol hydroquinone, a specific
endogenous metabolite of VE, exhibited more potential- ferroptosis role than its parent
compound, and inhibited 15-lipoxygenase via reduction of the enzyme’s non-heme iron from
its active Fe®" state to an inactive Fe?" state. This finding casts doubt on the prevailing model
that VE acts predominantly as a non-specific lipophilic antioxidant and suggests that VE is
instead a pro-vitamin, with"its quinone/hydrogquinone metabolites responsible for its anti-
ferroptotic activity.’?” These pre-clinical studies suggest that VE can reverse ferroptosis-
related neurodegeneration in cell and animal models.

A meta-analysis by Lopes da Silva et al. reported that plasma VE levels were significantly
reduced in AD patients than controls.!? Some observational studies and placebo-controlled
trials showed that VE supplement may potentially prevent the occur of AD or protect against
aggression of AD. A study by Basambombo et al. indicated that VE supplements are
associated with a reduced risk of cognitive decline.!?® Sano et al. reported that
supplementation with 2000 IU of VE slowed the progression of disease in patients with
moderately severe impairment from Alzheimer's disease.’®® A double-blind, placebo-
controlled, parallel-group, randomized clinical trial by Dysken et al. found that among
patients with mild to moderate AD, 2000 1U/d of alpha tocopherol compared with placebo
resulted in slower functional decline.®® However, a multicenter, randomized, double-blind,
placebo-controlled, parallel-group study by Ronald et al. found that supplement with 2000 1U
VE daily for three years had no benefit in patients with MCI1.2%2 In addition, a meta-analysis
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by Farina et al. found no evidence that a-tocopherol given to people with mild cognitive
impairment prevents progression to dementia, or improves cognitive function in people with
MCI or dementia.’®® These conflicting results suggest that more large, high-quality clinical
trials are required to determine whether VE supplements have a potential in decreasing AD
risk or slowing down the progression of AD.

Resveratrol

Resveratrol, also known as trans-3,4',5-trinydroxystilbene, is a polyphenol found in. various
plant sources, such as grapes, blueberries, peanuts, soybeans, pomegranates, and dark
chocolate. Resveratrol can react with other chemicals to form new derivatives to increase its
use in foods, until now more than 400 products containing resveratrol can be found on the
market. Resveratrol has been linked potential health benefits like neuroprotection through its
greater antioxidant and anti-inflammatory properties as well as_its ability to inhibit the
formation of AP peptide and neurofibrillary tangles incell lines and animal models.™** In vivo
studies also showed that resveratrol pretreatment inhibited ferroptosis through activating the
Nrf2/GPX4 pathway in mice with spinal cord injury and reducing Fe?* concentrations in
mouse hippocampal HT22 cells.**> 136 Resveratrol also ameliorated depression-like behaviors
by inhibiting ferroptosis via the protein kinase B (Akt)/Nrf2 pathway.®*" In addition,
resveratrol prevented sleep deprivation-triggered cognitive impairment by modulating
hippocampal ferroptosis via increasing GPX4, xCT and STING expression.® Although in
vivo and in vitro studies show' that resveratrol exhibits potential efficacy against AD, the
findings from clinical studies are controversial.

Several studies have shown that resveratrol could serve as a potential therapeutic agent to
manage the progression of AD. In a randomized, placebo-controlled, double-blind,
multicenter «52-week phase 2 trial of resveratrol in individuals with mild to moderate
Alzheimer disease, Moussa et al. reported that after 52 weeks, 500 mg resveratrol orally once
daily (with a dose escalation by 500-mg increments every 13 weeks, ending with 1000 mg
twice daily) was safe and well-tolerated. Simultaneously, resveratrol decreased cerebrospinal
fluid human matrix metalloproteinase 9, modulated neuro-inflammation, and induced
adaptive immunity.?*® On the contrary, in a randomized, double-blind, placebo-controlled,
crossover study on young healthy subjects showed that resveratrol administration resulted in
an increase in cerebral blood flow and had no short term effect in cognitive performances. 4
In addition, a randomized, double-blind, placebo-controlled trial conducted by Zhu et al.
showed that low-dose oral resveratrol (5 mg ) was safe and well tolerated, and after 12
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months, low dose of resveratrol had no significant effects on cognitive function and behavior
in subjects with mild to moderate AD.'*! Due to the small samples in above-mentioned study,
a larger study is required to determine whether low dose resveratrol may be beneficial.

EGCG

EGCG represents the principal bioactive polyphenol from in solid green tea extract. Tea is
one of the most consumed beverages worldwide. The annual sale of green tea is estimated to
exceed $11 billion globally. In addition, EGCG has been shown to act as a natural antioxidant
in foods, because it is water-soluble. Preclinical studies have shown that EGCG has several
beneficial properties including anti-oxidant, anti-inflammatory effects as well as
neuroprotective effects against neuronal damage and brain edema. " V'"studies demonstrated
that EGCG reduced the accumulation of Ap by enhancing endogenous APP proteolysis and
decreased nuclear translocation of c-Abl.1*2 EGCG was also able to suppress the expression of
AB-induced TNFa, IL-1p, IL-6, and iNOS, and restored the levels of intracellular antioxidants
Nrf2 and HO-1.2*3 In addition, experiment animal models of AD suggest that EGCG exerts its
neuroprotective effects via suppressing AP accumulation, modulating tau pathology and
reducing cognitive impairment.** 4> Similarly, EGCG was found to inhibit ferroptosis
inducers-induced ferroptosis by inhibiting the binding of Ras-selective lethality 3 (RSL3) to
GPX4 instead directly binding to the GPX4 activation site in SH-SY5Y neuronal cells.1*® The
neuroprotective function of EGCG was investigated in cerebellar granule neurons as a
simulation of spinal cord injury. EGCG inhibited ferroptosis and increased the survival rate of
cerebellar granule neurons by upregulating phosphorylation of protein kinase DI,
upregulating expression of GPX4 and FTH1, and downregulating expression of ACSL4 and
COoXx2.1%

Although:-these encouraging results in vitro and vivo studies, clinical trials demonstrating
efficacy of EGCG against AD were scare. Some observational studies show an inverse
association of tea consumption with the risk of AD. A cross-section study by Shinichi et al.
showed that a higher consumption of green tea is associated with a lower prevalence of
cognitive impairment in elderly individual over 70 years old.}*® Wang et al. in a prospective
cohort study reported that green tea consumption was significantly associated with lower
prevalence of all-cause dementia in hypertensive population.*® Another cross-section study
showed that green tea protected against amnestic MCI in the elderly male Han population, but
not female green tea consumers.'*® A longitudinal study showed that high frequency of green

tea intake was significantly associated with a lower risk of dementia.’®® However, a
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longitudinal study by Fischer et al. reported no significant association of green tea with
incident AD or memory decline.!®2

Due to confounding and selection bias of observational studies, intervention studies using
randomized controlled trials are needed to establish a cause-and-effect relationship between
tea consumption and lower risk of dementia. However, clinical intervention studies
demonstrating the protective effects of green tea against cognitive impairment or AD are
scare. In a randomized, double-blind, placebo-controlled study found that a combination of
green tea extract and L-theanine had beneficial effects on cognition in individuals with
MCI.1%3 Another double-blind, randomized controlled study assessed the effects of green tea
consumption on cognitive dysfunction. Green tea consumption of 2g/day for 12 months did
not significantly improve cognition function but prevented an increase in oxidative stress in
elderly population with cognition dysfunction.®®* Nevertheless, this study has several
limitations including a small sample of 27 participants-and a short follow-up intervention
time. Therefore, long-term intervention and large-sample controlled studies are needed to
clarify the effects of normal daily green tea consumption on cognitive dysfunction in the

elderly.

Curcumin
Curcumin is a polyphenol compound extracted from the rhizomes of the plant Curcuma
Longa Linn, also known as turmeric, which belongs to the zingiberaceae (ginger) family.
Traditionally, curcumin has been used as a food preservative to treat various ailments in India
and China.*® In vitro and in vivo studies have shown that curcumin exhibits potentially
important biological and pharmacological activities, including anti-inflammatory, antioxidant
and neuroprotective properties. 1158

Preclinical models have demonstrated a strong potential of curcumin to prevent
neurodegenerative diseases through decreasing tau hyperphosphorylation and inhibition of AP
formation and aggregation.’® % Curcumin was also found to exert its neuroprotective role
through suppressing subarachnoid hemorrhage-induced neuronal ferroptosis by regulating the
Nuclear factor erythroid 2-related factor 2 (Nfr2)/HO-1 signaling pathway.®! Lei et al.
reported that curcumin - polydopamine nanoparticles inhibited neuron ferroptosis by chelating
and reducing Fe?* accumulation.!®? In addition, epidemiological data also support the concept
that curcumin can prevent neurodegenerative diseases such as AD. For instance, India, with
the regular intake of turmeric about 4g/day in their routine diet has been reported to have a

lower incidence rate and prevalence of AD.!%
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Contrary to preclinical and epidemiological studies, only a limited number of clinical
studies have investigated the effects of curcumin on human cognitive function, and the results
of these studies are conflicting. In healthy older population, curcumin administration shows a
potential neuroprotective benefit. A double-blind, placebo- controlled trial by Small et al.
evaluated the efficacy of Theracurmin®, a compound that contains 90 mg of curcumin in non-
demented adults. Theracurmin® was developed using a microparticle and surface-controlled
drug delivery system, exhibiting over 30-fold higher bioavailability than conventional
curcumin in rats.*®* It has been verified that high plasma curcumin levels can be safely
achieved after single administration of Theracurmin® up to 210 mg in healthy volunteers.'®°
Small et al. found that daily oral Theracurmin® led to significant memory and attention
benefits, suggesting that symptom benefits are associated with decreases in amyloid and tau
accumulation in brain regions modulating mood and memory.!®® Similarly, Cox et al.
evaluated the effect of Longvida® Optimized Curcumin,-a compound that contains 80 mg of
curcumin in healthy adults, between 65 and 80 years of age for 12 months. Longvida®
capsule encapsulates the free curcumin in a tri-lipid matrix with solid lipid curcumin particle
technology, enhancing its solubility, allowing .it to survive digestion and enter the
bloodstream, target tissues.®” It was found that one-hour post-dose, curcumin administration
improved attention and working memory.*%® However, clinical studies on population with
mild cognitive impairment or AD showed no cognitive enhancing effects of curcumin. A pilot
trial was conduct by Baum et al. ***to assess the efficacy of curcumin on a Chinese adult
population with progressive cognitive impairment. The intervention group received curcumin
(1 g or 4 g) either in capsules or as powder for 6 months and did not demonstrate significant
differences in MiniMental state examination (MMSE) scores throughout time or among treats,
although increased AB1-40 levels and vitamin E were observed. Similarly, a randomized,
double blind, placebo-controlled study by Ringman et al. reported that a population with mild
to-moderate AD received Curcumin 3 Complex®, composing three different constituents
(curcumin, bisdemethoxycurcumin and demethoxycurcumin) for 24 weeks. No significant
differences in cognitive function, AP and tau levels in plasma and CSF were found.'’® Given
the limited available clinical studies of the effect of curcumin in AD patient, it needs more
clinical trial studies with large sample size and long treatment duration to evaluate the

neuroprotective role of curcumin in AD patients.
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Quercetin
Quercetin belongs to the flavonoids family, which is found in most of the plants including
fruits, vegetables, green tea and even in red wine and has a wide range of biological actions
including anti-oxidant, anti-carcinogenic, anti-inflammatory and antiviral activities.!™ The
dietary intake of total flavonoids is estimated to be 200-350 mg/day, and the intake of
quercetin is 10-16 mg/day.'’2 In vitro studies demonstrated that quercetin inhibited Ap fibril
formation, tau-fibril aggregation and hyperphosphorylation of tau protein.t’317> |n addition,
quercetin protected against diabetic encephalopathy through inhibition of hippocampal
ferroptosis, as evidenced by decreased lipid peroxidation and iron deposition in the
hippocampus, and upregulated the Nrf2/HO-1 signaling pathway.'’® Quercetin also prevented
the ferroptosis of oligodendrocyte progenitor cells by inhibiting the ld2/transferrin pathway
accompanied by decreased iron concentration and increased GSH.Y"" A recent study reported
that quercetin inhibited neuronal pyroptosis and ferroptosis by modulating microglial M1/M2
polarization, alleviating iron deposition in the whole brain, and increasing GPX4 and Nrf2
expression in atherosclerosis.'’”® In another study, it'was demonstrated that quercetin and
resveratrol likely protected against erastin- and RSL3-induced ferroptosis by inhibiting the
iron-catalyzed generation of hydroxyl radicals in mouse hippocampal HT22 cells.*3
Preclinical in vivo studied showed that guercetin improved cognitive and emotional
function in mouse models of Alzheimer's disease. Wang et al. reported that long-term
treatment with quercetin lessens learning and memory deficits in in the APPswe/PS1dE9
transgenic mouse model of AD:'® Another study showed that quercetin protected cognitive
and emotional function decreases extracellular B-amyloidosis, tauopathy, astrogliosis and
microgliosis in the hippocampus and the amygdala in aged 3xTg-AD mice.'® Administration
of quercetin along with daily usage of flavonoid rich fruits also decreased amyloid load and
improves behaviorin‘the transgenic mice (APPsw/Tg2576) of AD.%8 A pilot study by Millor
et-al. found that Dasatinib and quercetin treatment was feasible, safe, and improved cognition
in older adults aged >65 years with slow gait speed and mild cognitive impairment.'82

Baicalein

Baicalein, a naturally occurring flavonoid primarily derived from the roots of Scutellaria
baicalensis, a prominent herb in traditional Chinese medicine and is used as dietary
supplement in Asia. Baicalein has been traditionally used to treat inflammation, bacterial
infections, viruses, and fever. It exhibits a wide range of pharmacological activities, including

antioxidant, anticancer, neuroprotective, and cardioprotective properties.®® Baicalein also
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exhibited neuroprotective role by suppressing heparin-induced tau aggregation via initializing
non-toxic tau oligomer formation.!8* Shi et al. reported that baicalein ameliorated the memory
and cognitive deficits in APP/PS mice via regulating gut microbiota.’® Recent studies have
shown that baicalein exert its neuroprotective activity by inhibition of ferroptosis. For
instance, Li et al. reported that baicalein reversed the cerebral ischemia-reperfusion injury via
anti-ferroptosis, which is regulated by GPX4/ACSL4/ACSL3 axis.!8® Baicalein was also
reported to decrease ferroptotic phosphatidylethanolamine oxidation and improved outcome
after controlled cortical impact.®®’ Long-term treatment of baicalein upregulated the
intracellular glutathione (GSH) contents and exerted neuroprotective effects against oxidative
stress-induced neuronal damage.'® In addition, long-term oral administration.of baicalein
inhibited 12/15-LOX enzymatic activity and reduced AP production“in- APP/PS1 mice.'®®
Baicalein can also chelate iron via its 6,7-dihydroxy structure-and inhibit iron-induced lipid
peroxidation and oxidative stress damage.!%

Baicalein has potential as a novel neuroprotective agent for the treatment of AD. Two
Phase | clinical trials of baicalein chewable tablets in healthy Chinese subjects have been
completed in China so far. A Phase I, randomized, double-blind, single-dose trial of baicalein
(100-2800 mg) in 72 healthy Chinese adults investigated the pharmacokinetic properties of
baicalein and its main metabolite, bacalin. Single oral doses of 100-2800 mg of baicalein
were safe and well tolerated by healthy subjects. Clinical laboratory assessments showed no
signs of toxicity in the liver or kidney.191 Another single-center, double-blind, placebo-
controlled, parallel-group study investigated the pharmacokinetic properties, safety and
tolerability of baicalein after a multiple-ascending-dose protocol in 36 enrolled healthy
participants. In dose range of 200-800 mg, multiple-dose oral baicalein administration was
safe and well tolerated. In addition, no serious accumulation of baicalein was observed.!%2 As
the next step, clinical trials testing the effects of baicalein on the cognitive functions in
patients with AD will have to be conducted to test what the actual benefits will be.

ALA
ALA, a naturally occurring disulfide molecule, is mainly found in fruits and vegetables and
also can be synthesized in animals and humans’ tissues with high metabolic activity such as
the heart, liver, and kidney.!%*1% ALA has been widely used in pharmaceuticals and
nutraceuticals.

Pre-clinical studies demonstrated promising neuroprotective activity of ALA, due to its

universal antioxidant activities, iron chelator properties and anti-inflammatory properties.'%-
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198 Zhang et al. reported that ALA inhibited hyperphosphorylated tau-induced iron overload
and ferroptosis and improved abnormal behavior in P301S tau transgenic mice.!*® ALA also
exerts a neuroprotective effect on Parkinson’s disease model by regulate iron metabolism
through upregulating ferroportin (FPN) and ferritin heavy chain 1 (FTH1) and
downregulating iron importer DMT1 accompanied by inhibiting the downregulation of
GPX4.2%: 201 | _.F001, a multifunctional fasudil-lipoic acid dimer prevents RSL3-induced
ferroptosis in HT22 cells by decreasing the total number of intracellular Fe** and restoring
ferritin heavy chain 1 as well as GPX4 levels.?2%? Consistent with pre-clinical data, several
clinical studies have been suggested the potential effects of ALA against cognitive decline in
patients with AD. Fava et al. investigated that the effect of ALA treatment (600 mg/day) on
cognitive performances in AD patients with diabetes mellitus (61 -patients) and without
diabetes mellitus (65 patients). The results of this study showed that ALA treatment could be
effective in slowing cognitive decline in patients with' AD and diabetes mellitus.2%® In
addition, a randomized placebo-controlled pilot trial‘by Shinto et al. evaluated the effects of
supplementation with n-3 PUFA alone or n-3 PUFA plus ALA compared to placebo on
oxidative stress biomarkers and cognitive decline..39 subjects were recruited and 34 subjects
completed the 12-month intervention. This pilot study found that n-3 PUFA + ALA resulted
in less decline of cognition compared to placebo or n-3 PUFA alone. However, the limitation
of this study is that the effect of ALA alone on cognitive decline was not evaluated.?%
Another clinical trial by Hager et al. investigated the effects of ALA on cognitive functions in
nine patients with AD and related dementias.?®® This study provided supportive evidence of
ALA therapy in patients with AD and related dementias. However, further clinical studies on
larger cohorts may be required to determine whether ALA effectively improves cognition in
AD patients.

CONCLUSION

Since ‘ferroptosis was coined by Dixon et al. in 2012, a list of studies has shown that
ferroptosis is implicated in the occurrence and progression of various human diseases
including cancer, cardiovascular and neurodegenerative diseases.22 It is clear that ferroptosis
contributes to the pathology of AD, inhibiting ferroptosis has the potential to prevent or treat
AD. Therefore, increasing understanding of the mechanisms and functions of ferroptosis will
facilitate the identification of potential targets for the treatment of AD. Although it remains
elusive about why and how lipid peroxidation leads to ferroptotic cell death and the exact
mechanisms of ferroptosis in AD occurrence and progression, plant-derived dietary
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antioxidants have drawn considerable attention due to their multiple targets, multiple
mechanisms and relatively safe profiles as ferroptosis inducers or inhibitors. Numerous
preclinical studies have shown that plant-derived dietary antioxidants possess enormous
chemopreventive and therapeutic potential against AD via suppressing abnormal tau
phosphorylation or amyloid plaque formation through regulating ferroptosis signaling
pathways. Notably, most above-mentioned plant-derived dietary antioxidants have
demonstrated conflicting clinical results in regulating cognitive functions in patients with AD
except ALA. The pathophysiological and phylogenetic differences between rodents and
humans and the major drawbacks of plant-derived dietary antioxidants including low
bioavailability, low absorption, quick metabolism and the challenges of blood-brain barrier
crossing may contribute to the difference in results between animals and human studies. To
resolve these problems, novel formulations of natural compounds are currently designed and
used in clinical trials. In addition, given the small sample‘size and the short duration of most
clinical trials, further clinical studies with large sample size and long treatment duration may
be required to determine whether plant-derived dietary antioxidants have the treatment effects
on AD patients. Notably, AD a heterogeneous disease with a complex pathobiology. It is
unlikely that a treatment can be effective in all populations, implying that more targeted
subpopulations of AD should be considered, and highlighting that more advanced statistical
methods for subgroup identification and evaluations should be used in the analysis of future
targeted clinical trials of plant-derived dietary antioxidants. Interestingly, nearly all studied
have shown that plant-derived dietary antioxidants have better beneficial effects on cognitive
functions in healthy aged population than in population with MCI or AD. It suggests that
plant-derived dietary antioxidants may exert their preventive role but not therapeutic role in
regulating-cognitive functions. Therefore, a plant-based diet that contains natural compounds
may lead to potential health benefits in preventing cognitive decline in health elderly
population whereas ALA which shows therapeutic potential in preventing decline of
cognition_of patients with AD in clinical trials may be utilized to treat AD alone or in
combination with other agents.
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Figure 1. Molecular mechanism of ferroptosis. The transferrin receptor (TFRC) facilitates the entry of Fe** into the cell, which is
reduced to Fe?* by metalloreductase (STEAP3) in the endosome and transported into the labile iron pool (LIP). Excess iron from LIP
is stored in ferritin which can be degraded by ferritinophagy. In addition, ferroportin (FPN) facilitates Fe?* export. Free PUFA are
activated by acyl-coenzyme A (CoA) synthetase long chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase
3 (LPCAT3) to generate membrane phospholipids (PL). PL undergoes lipid peroxidation and forms phospholipid hydroperoxides
(PLOOH) via non-enzymatic (Fenton reaction) and enzymatic (lipoxygenases (LOX) and/or cytochrome P450 oxidoreductase
(PORY)) processes. PLOOH.can react.with cellular labile Fe?* to generate alkoxyl and peroxyl radicals, which can react with other
PUFA and results in the propagation of PLOOH production. The classical ferroptosis-inhibiting axis includes uptake of cystine via
the system x¢ - cystine—glutamate antiporter, which is crucial for glutathione (GSH) synthesis. Glutathione peroxidase 4 (GPX4)
coverts PLOOH to PL-OH by the use of reduced GSH as a substrate and protects cells from oxidative stress. Oxidized glutathione
(GSSG) is reducedito GSH via glutathione—disulfide reductase (GSR) using electrons provided by NADPH. Other ferroptosis
suppressive:mechanisms include farnesyl-diphosphate farnesyltransferase 1 (GCH1)/ di/tetrahydrobiopterin (BH2/BH4) pathway,
the ferroptosis suppressor protein 1 (FSP1)-ubiquinone system and mevalonate pathway, which mediate inhibition of lipid
peroxidation and protect cells from ferroptosis induction. Ac-CoA, Acetyl-CoA; HMG-CoA, 3-hydroxy-3-methylglutaryl CoA



Table 1. List of various compounds that acts as anti-ferroptotic agents for the AD treatment

Classification
Compound(s)

Sources

Proposed anti-ferroptotic actions

Cells/model

Key reference

Vitamin E (VE)

Alpha-tocopherol
hydroquinone
Resveratrol

Epigallocatechin-
3-gallate (EGCG)

Curcumin

Quercetin

Baicalein

Alpha-lipoic acid
(ALA)

Nuts, seeds, plant oils and
leafy green vegetables

A specific endogenous
metabolite of VE
Plant sources, such as
grapes, blueberries,
peanuts, soybeans,
pomegranates

Solid green tea extract

The rhizomes of the

plant Curcuma Longa Linn
Fruits, vegetables, green
tea and even in red wine

The roots of Scutellaria
baicalensis

Fruits and vegetables

VE deficient exacerbated hippocampal neurodegeneration

VE reversed radiation-induced ferroptosis via decreased GSH level
and increased MDA, lipid ROS and intracellular iron ion levels

VE downregulated 15-lipoxygenase and reversed spinal cord injury-
induced ferroptosis

Inhibiting 15-lipoxygenase via reduction of the enzyme’s non-heme
iron from its active Fe®* state to an inactive Fe?* state.

Resveratrol pretreatment activated the Nrf2/GPX4 pathway

Resveratrol treatment reduced Fe?* concentrations

Resveratrol inhibited ferroptosis via the Akt/Nrf2 pathway
Resveratrol prevented sleep deprivation-induced hippocampal
ferroptosis via increasing GPX4, xCT and- STING expression
EGCG inhibited the binding of RSL3 to GPX4 instead directly
binding to the GPX4 activation site

EGCG upregulated expression of .GPX4:and FTH1, downregulated
expression of ACSL4 and COX2

Curcumin regulated Nfr2/HO-1 signaling pathway

Quercetin decreased lipid peroxidation and iron deposition in

the hippocampus, and upregulated the Nrf2/HO-1 pathway
Quercetin modulated'microglial M1/M2 polarization, alleviated iron
deposition in the whole brain, and increased GPX4 and Nrf2
expression

Quercetin also prevented the ferroptosis of oligodendrocyte progenitor
cells by decreasing iron concentration and increasing GSH
Baicalein reverses the cerebral ischemia-reperfusion-induced
ferroptosis via regulating GPX4/ACSL4/ACSL3 axis

Baicalein upregulated the intracellular GSH contents

Baicalein inhibited 12/15- lipoxygenase enzymatic activity
Baicalein reduced 15-lipoxygenase, ACSL4; increased GSH

ALA inhibited hyperphosphorylated tau-induced iron overload and
ferroptosis

ALA regulated iron metabolism and inhibited

the downregulation of GPX4

Gpx4BIKO mice

Mouse hippocampal HT-22 cells
Sprague-dawley male rats
Sprague-dawley male rats

Mice with spinal cord injury

Mouse hippocampal HT22 cells
PC12 cells
C57BL/6 J mice

SH-SY5Y neuronal cells
Cerebellar granule neurons
C57BL/6 J mice

Type 2 diabetic Goto-Kakizak rats
and PC12 cellls

C57BL/6 J mice

and HT22 cells

Oligodendrocyte progenitor cells

C57BL/6 J mice

and HT22 cells
Dopaminergic CATH cells
APP/PS1 mice

C57BL/6 J mice

P301S tau transgenic mice

Parkinson’s disease mouse model
and PC 12 cells

117
125
126
127

135

136
137
138
146
147
161
176

178

177
186
188
189
187
199

200, 201
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Table 2. List of clinical trials utilizing combination/conjugate plant-derived bioactive compounds as preventative therapy or treatment in AD

38

Natural compound

Participants

Intervention

Main results

Key reference

Vitamin E (VE)+Selegiline

VE +Memantine

VE +Donepezil

Resveratrol

Resveratrol

Resveratrol + dextrose + malate

Epigallocatechin-3-gallate
(EGCG)

EGCG

Curcumin

341 patients with moderate AD
613 patients with mild to
moderate AD

790 patients with mild
cognitive impairment

119 patients with mild to
moderate AD

22 healthy adults

39 patients with mild to
moderate AD

91 patients with mild cognitive
impairment

33 elderly participants with
cognitive dysfunction
40 non-demented adults

2000 U VE, 10 mg selegiline,
both VE and selegiline or
placebo daily for 2 years

2000 1U VE, 20 mg memantine,
both or placebo daily for 5
years

2000 IU VE, 10 mg donepezil
or placebo, daily for 3 years

Up to 1 mg resveratrol by
mouth twice daily or placebo
for 52 weeks

2 doses (250 and 500 mg) of
trans-resveratrol in
counterbalanced order or
Placebo on separate days, after
a 45-min resting absorption
period, cerebral blood flow and
deoxyhemoglobin were
assessed

5 mg resveratrol + 5 mg
dextrose +5 mg

malate or placebo twice daily
for 1 year

1680 mg greenrtea extract

and I-theanine or placebo for 16
weeks

2 g/day of green tea powder or
placebo powder for 12 months
Theracurmin® containing
90mg of curcumin twice daily
or placebo for 18 months

Treatment with VE or selegiline slowed the progression of
disease in patients with moderate AD

Compared with placebo, 2000 IU/day of VE resulted in slower
functional decline. No difference between groups receiving
memantine alone or memantine + VE

VE had no benefit: Donepezil

was associated with:a lower rate of

progression in first 12 months

Resveratrol decreases CSF biomarkers,

Modulates neuro-inflammation and induces adaptive immunity

Resveratrol administration resulted in dose-dependent increases
in cerebral blood flow and deoxyhemoglobin.

Low-dose resveratrol is safe and well-tolerated, no significant
effects on cognitive function and behavior in subjects with mild
to moderate AD

Green tea extract and I-theanine improved memory and
selective attention aa evidenced by brain theta waves were
increased significantly in the temporal, frontal, parietal, and
occipital areas

Green tea consumption did not significantly affect cognitive
function, but prevent an increase of oxidative stress

Daily oral Theracurmin® may lead to improved memory and
attention in non demented adults. Symptom benefits are
associated with decreases in amyloid and tau accumulation in
brain regions modulating mood and memory

130

131

132

139

140

141

153

154

166




Table 2. List of clinical trials utilizing combination/conjugate plant-derived bioactive compounds as preventative therapy or treatment in AD (cont.)

39

Natural compound

Participants

Intervention

Main results

Key reference

Curcumin

Curcumin

Curcumin

Quercetin

Baicalein

Alpha-lipoic acid (ALA)

ALA+n-3 fatty acids (fish oil)

ALA+ acetylcholinesterase
inhibitors

60 healthy adults aged 60-85

34 patients with AD

36 patients with mild-to-
moderate AD

12 older adults aged >65 years
with slow gait speed and mild
cognitive impairment

36 healthy participants

61 AD patients with Type 2
diabetes mellitus and 65 AD
patients without Type 2
diabetes mellitus

39 patients with AD

9 patients with AD

Longvida® containing 80 mg
of curcumin in acute (1 and 3 h
after a single dose), chronic (4
weeks) and acute-on-chronic (1
and 3 h after single dose
following chronic treatment)
treatment

1g, 4g of curcumin or placebo
once daily for 6 months

2 g, 4 g of Curcumin C3
Complex® or placebo daily for
24 weeks

100 mg of dasatinib and 1250
mg of quercetin for two days
every two weeks over 12 weeks
200, 400, and 800 mg baicalein
or placebo once daily on days 1
and 10, twice daily on days 3
9,

ALA (600 mg/day) in
combination with antidementia
treatment for 16 months

ALA (600mg);fish oil (3
g/day) containing a daily dose
of 675mg DHA and 975 mg
EPA, ALA+fish oil or placebo
for.12 months

600 mg ALA once daily +
acetylcholinesterase inhibitors

One-hour post-dose, curcumin administration improved
attention and working memory. Chronic treatment improved
working memory and mood. Acute-on-chronic treatment
improved alertness and contentedness.

1, 4g of curcumin intervention did not demonstrate significant
differences in MiniMental state examination scores throughout
time or among treats

Curcumin-was generally well-tolerated, but unable to
demonstrate clinical or biochemical evidence of efficacy of
curcumin in AD

Dasatinib and quercetin treatment was feasible, safe, and
improved cognition

In dose range of 200-800 mg, multiple-dose oral baicalein
administration was safe and well tolerated

ALA treatment could be effective in slowing cognitive decline
in patients with AD and diabetes mellitus

The combination of ALA+n-3 fatty acids slowed cognitive and
functional decline in AD over 12 months

The treatment led to a stabilization of cognitive functions

168

169

170

182

192

203

204

205
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