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Background and Objectives: Critically ill patients require individualized nutrition support, with assessment tools 
like Nutrition Risk Screening 2002 and Nutrition Risk in the Critically Ill scores. Challenges in continuous nutrition 
care prompt the need for innovative solutions. This study develops an artificial intelligence assisted nutrition risk 
evaluation model using explainable machine learning to support intensive care unit dietitians. Methods and Study 
Design: Ethical approval was obtained for a retrospective analysis of 2,122 patients. Nutrition risk assessment 
involved six dietitians, with 1,994 patients assessed comprehensively. Artificial intelligence models and shapley 
additive explanations analysis were used to predict and understand nutrition risk. Results: High nutrition risk 
(35.2%) correlated with elder age, lower body weight, BMI, albumin, and higher disease severity. The AUROC 
scores achieved by XGBoost (0.921), CatBoost (0.926), and LightGBM (0.923) were superior to those of Logistic 
Regression. Key features influencing nutrition risk included Acute Physiology and Chronic Health Evaluation II 
score, albumin, age, BMI, and haemoglobin. Conclusions: The study introduces an artificial intelligence assisted 
nutrition risk evaluation model, offering a promising avenue for continuous and timely nutrition support in critically 
ill patients. External validation and exploration of feature relationships are needed. 
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INTRODUCTION 
Critically ill patients are highly heterogeneous, and there is 
no one-size-fits-all approach to nutrition support that can 
be applied universally. However, most researchers agree 
that patients with a high nutrition risk require aggressive 
nutrition support to improve their outcomes. American So-
ciety for Parenteral and Enteral Nutrition guideline sug-
gested using Nutrition Risk Screening 2002 (NRS2002), 
Nutrition Risk in the Critically Ill (NUTRIC) score to 
screen high nutrition risk patients.1 In the European Soci-
ety for Parenteral and Enteral Nutrition guidelines, there is 
no gold standard for defining nutrition risk. However, pa-
tients who have been admitted to the intensive care unit for 
longer than 48 hours are assumed to be at risk for malnu-
trition.2,3 

The NUTRIC score includes age, Acute Physiology and 
Chronic Health Evaluation II (APACHE II) score, Sequen-
tial Organ Failure Assessment (SOFA) score, comorbidi-
ties, Interleukin-6 (IL-6) levels, and days from hospital 
admission to intensive care unit (ICU) admission.4 How-
ever, for practical purposes, IL-6 is often neglected.5 No-
tably, the NUTRIC score includes disease severity scores 
i n s tea d o f  si gn i f ic a nt  nu t r i t i on ma rker s .  T he  

 
 

NRS2002 takes into account BMI, body weight loss, appe-
tite, and disease severity, but it is not well validated in crit-
ically ill patients.6    

Registered dietitians in the ICU play a crucial role in the 
comprehensive evaluation of nutrition risk in critically ill 
patients. However, in the real world, continuity of nutrition 
care in the ICU can be a problem during nighttime and hol-
idays due to a shortage of staff.7,8 Registered dietitians are 
facing increasingly more challenges, especially during the 
Coronavirus disease 2019 (COVID-19) pandemic.9 

Recently, artificial intelligence and machine learning 
have been widely used in medical care to assist with clini-
cal decision-making and improve care efficiency.10  
For example, Sharma et al. demonstrated the use of 
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machine learning methods to identify patients at risk of 
malnutrition, while Wang et al. reported on an artificial in-
telligence-assisted tool for evaluating nutritional status in 
elderly patients.11,12 Yin et al. also developed a machine 
learning-assisted decision-making system to recognize 
malnutrition in cancer patients.13 However, these studies 
have mainly focused on elderly or cancer patients rather 
than critically ill patients and did not utilize interpretable 
machine learning to aid in decision-making. If artificial in-
telligence can simulate the work of registered dietitians, it 
could provide continuous nutrition support for critically ill 
patients.  

The present study aims to develop an artificial intelli-
gence-assisted nutrition risk evaluation model using ex-
plainable machine learning methods to support the work of 
registered dietitians in the ICU. 
 
METHODS 
Ethical approval 
This study was approved by the Institutional Review Board 
of the Taichung Veterans General Hospital (TCVGH: 
CE21134A). All data were obtained from electronic medi-
cal records and de-linked before analyses. Informed con-
sent was waived because of the de-linked data was re-
trieved retrospectively. 

 
Study population 
This study was conducted at TCVGH, a tertiary-care refer-
ral hospital in central Taiwan, from January 2016 to De-
cember 2019. Inclusion criteria comprised respiratory fail-
ure requiring ventilator support and ICU admission. Exclu-
sion criteria included ICU stays less than 3 days, age less 
than 20 years, Human Immunodeficiency Virus (HIV) or 
pregnant patients (Figure 1). A total of 1,994 patients meet-
ing the criteria were screened from 2,122 potential candi-
dates. 

 
Nutrition risk assessment consensus 
The definition of high nutritional risk in our study is based 
on the clinical experience of dietitians, incorporating both 
established guidelines and practical considerations in ICU 
settings. To establish a consensus definition, we engaged 

six senior dietitians with over 10 years of ICU experience. 

The process included the integration of multiple guidelines 
and tools, such as the NRS 2002 score, the NUTRIC score, 
the 2019 ESPEN guideline, and an evaluation of potential 
refeeding syndrome. Nutritional risk was assessed across 
four dimensions: nutritional status, disease severity, age, 
and the presence of pressure ulcers. Each dimension was 
scored on a scale of 1 to 3 according to severity, and 
through three rounds of consensus meetings, a threshold 
score of ≥5 was determined to classify patients as at high 
nutritional risk. This approach sought to balance clinical 
rigor with feasibility in clinical workflow. The inter-rater 
reliability, assessed using Fleiss' kappa, was 0.64, indicat-
ing substantial agreement. 

 
Variables categorized by main clinical domains 
The dataset was collected by dietitians from electronic 
medical records, capturing data 24 hours before ICU ad-
mission and 48 hours after ICU admission. It includes de-
mographic information such as age and sex, anthropomet-
ric data like height and body weight, biochemical markers 
such as serum albumin level, basic laboratory results, dis-
ease severity scores including APACHE II and SOFA 
scores, and information on comorbidities. Outcome 
measures encompassed hospital mortality, length of venti-
lator dependency, ICU stay, and total hospital stay. 

 
Building the prediction model  
We randomly selected 80% patients for model training and 
validation using 5-fold cross-validation, and the other 20% 
for model evaluation (Figure 2). Four algorithms including 
Extreme Gradient Boosting (XGBoost), Categorical 
Boosting (CatBOOST), Light Gradient Boosting Machine 
(LightGBM), and Logistic regression were selected for 
model determination. Predictive features included demo-
graphic data, clinical indicators, and other variables typi-
cally used by dietitians. The outcome was the nutritional 
risk classification assigned by the dietitians. Additionally, 
we employed a wrapper feature selection approach and 
identified that the top five features yielded the highest ac-
curacy. 

 

 
 
Figure 1. Flowchart of subject enrolment. TCVGH: Taichung Veterans General Hospital; HIV: Human Immunodeficiency Virus; ICU: 
Intensive Care Unit. 
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 Shapley Additive Explanations (SHAP) 
SHAP is a game-theoretic approach for explaining the out-
put of a machine learning model.14 It combines optimal 
credit allocation with local explanations by utilizing clas-
sic Shapley values from game theory and their relevant ex-
tensions. Shapley values, widely employed in cooperative 
game theory, possess desirable properties. SHAP values 
offer a comprehensive method to explain the results of our 
ML model and provide consistent and locally accurate at-
tribution values for each feature. In our study, SHAP is 
used to explore the relationship between the nutritional risk 
outcome and features. 

 
Statistical analysis 
Data analysis was conducted using SPSS software (version 
22.0; International Business Machines Corp., Armonk, 
NY, USA). A p-value of ≤ 0.05 was established as statisti-
cally significant. Continuous data were expressed as mean 
± standard deviation. Categorical variables were described 
as counts and percentages. A comparison of interval data 
between the high and low nutritional risk groups was per-
formed using the t-test or chi-square test. Python version 
3.6.9 was utilized to evaluate the discrimination, accuracy, 
and applicability of the models in the testing sets using re-
ceiver operating characteristic curve analysis and decision 
curve. 
 
RESULTS 
Demographic data 
A total of 1,994 patients were enrolled and 65 features 
were selected in this study. The mean age was 65.6 ± 
16.3years, and 35.4% (706/1994) of patients was female. 
701 patients were belonging to high nutritional risk group 
(35.2%). 

Patients with high nutritional risk were associated with 
elder age (72.8 ± 14.6 vs. 61.7 ± 15.9, p < 0.01), lower 
body weight (58.6 ± 12.6 vs. 64.4 ± 14.2, p < 0.01), lower 
BMI (22.7 ± 4.52 vs. 24.3 ± 4.79, p < 0.01) and lower al-
bumin (2.58 ± 0.57 vs. 3.14 ± 0.64, p < 0.01) compared to 
patients with low nutritional risk group (Table 1).  

Disease severity such as APACHE II and SOFA score 
were higher in high nutritional risk group compared to low 
nutritional group patients. The clinical outcomes including 
ICU days, ventilator use days, hospital days, and mortality 

were significantly worse in high nutritional risk group pa-
tients (Table 1). 
 
Explanation of the model 
The performance of the model 
Four classification algorithms were trained using 5-fold 
cross-validation. The results are summarized in Table 2. 
By comparing the results of all features in training dataset, 
we found that XGBoost and Catboost performed similarly 
and were the top performers across most metrics, particu-
larly in terms of Precision, Sensitivity, and area under re-
ceiver operating characteristic curve (AUROC) in the 5-
fold cross-validation. LightGBM followed closely, while 
Logistic Regression showed notably lower performance, 
especially in Specificity and AUROC. In the testing da-
taset, the performance metrics of the algorithms slightly 
decreased but still remained relatively high. The decision 
curve of the four algorithms in test dataset are shown in 
Figure 3. We found that Catboost, XGBoost, and 
LightGBM models exhibited higher net benefit than lo-
gistic regression as well as default strategies of treating all 
patients or no patients. 
 
SHAP summary plot 
To enable the visualized interpretation of key features of 
the model, we used a SHAP plot to illustrate how these 
features affect nutrition risk. Figure 4a illustrated the 
SHAP plot ranks features based on their overall impact on 
the prediction. The features are listed top-down with de-
creasing importance. Only the top 20 features are listed, 
and categorical variables are split into one bar per cate-
gory. We found that APACHE II, Albumin, age, BMI, and 
Haemoglobin are the characteristics that have the greatest 
influence on nutritional risk. 

Figure 4b illustrates a small observed value of the char-
acteristic factor. Features with higher total SHAP values 
(red) had a stronger influence on increasing the prediction, 
while those with lower values (blue) had a greater effect 
on decreasing it. The x-axis displays the individual SHAP 
values for each patient. The results show that APACHE II 
score and age are positively correlated with the nutritional 
risk. Albumin, BMI, and Hemoglobin are negatively cor-
related with the nutritional risk. 

 
 
Figure 2. The flow diagram of the study 
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 SHAP dependence plot  
We further used SHAP dependence plot to illustrate how 
the top 5 features influenced the outcome of nutritional risk 
(Figure 5). In SHAP dependence plot, each point repre-
sents an individual patient, thereby illustrating how the at-
tribution importance of baseline variables varies with their 
values. The SHAP values exceeding zero represented an 
increased risk of nutrition.  

We found that age is about less than 70 (Figure 5a), 
APACHE II is about less than 25 (Figure 5b), which is pre-
dicted to be a low nutritional risk; on the contrary, BMI is 
about less than 20 (Figure 5c), Alb is about less than 3 

(Figure 5d), and and Hgb approximately below 11 (Figure 
5e) predict high nutritional risk. 
 
SHAP individual force plots 
We selected two patients for analysis using SHAP individ-
ual force plots. In Figure 6a, the AI predicted a high nutri-
tional risk, contrary to the dietitian's assessment of low 
risk. The AI model considered five features (Age, 
APACHE II, BMI, Albumin, Haemoglobin), all leaning to-
wards a high nutritional risk, cumulatively predicting a 
96% probability of high risk. Despite the patient's severe 

Table 1. Patients’ demographic characteristics, severity score, clinical outcomes 
 

 
Variables 

All 
(n = 1994) 

High nutritional 
risk group 
(n = 701) 

Low nutritional 
risk group 
(n = 1293) 

p-value 

Demographic data     
 Age (years) 65.6±16.3 72.8±14.6 61.7±15.9 <0.001** 

 Sex (female) 706 (35.4%) 262 (37.4%) 444 (34.3%) 0.192 
 Weight (kg) 62.4±14.0 58.6±12.9 64.4±14.2 <0.001** 

 Body mass index 23.7±4.75 22.7±4.52 24.3±4.79 <0.001** 

 Albumin (mg/dL) 2.92±0.67 2.58±0.57 3.14±0.64 <0.001** 

Comorbidities (n, %)     
 Diabetes mellitus 658 (33.0%) 256 (36.5%) 402 (31.1%) 0.016* 

 Liver cirrhosis  157 (7.87%) 70 (9.99%) 87 (6.73%) 0.013* 

 Uremia  633 (31.6%) 287 (40.9%) 346 (26.8%) <0.001** 

 Central nerve system disorder  407 (20.4%) 142 (20.3%) 265 (20.5%) 0.946 
 Chronic lung disease  300 (15.1%) 126 (18.0%) 174 (13.5%) 0.009** 

 Immunocompromised disorders  175 (8.78%) 76 (10.8%) 99 (7.66%) 0.021* 

 Any malignancy, including lymphoma and 
leukemia, except malignant neoplasm of 
skin  

661 (33.2%) 273 (38.9%) 388 (30.0%) <0.001** 

 Congestive heart failure  358 (18.0%) 143 (20.4%) 215 (16.6%) 0.042* 

 Chronic lung disease  300 (15.1%) 126 (18.0%) 174 (13.5%) 0.009** 

Disease severity scores     
 APACHE II score 23.8±7.80 29.4±5.62 20.4±6.96 <0.001** 

 SOFA score 7.55±3.91 9.54±3.69 6.46±3.59 <0.001** 

Clinical outcome     
 Length of ICU stay (day) 10.3±10.1 13.4±10.6 8.70±9.48 <0.001** 

 Length of ventilator dependency (day) 5.27±11.0 7.49±12.4 4.06±9.89 <0.001** 

 Length of hospital stay (day) 27.0±27.3 31.4±25.7 24.6±27.9 <0.001** 
 Hospital mortality 478 (24.0%) 252 (36.0%) 226 (17.5%) <0.001** 
ICU (n, %)    <0.001** 
 Medical 1432 (71.8%) 562 (80.2%) 870 (67.3%)  
 Surgical 562 (28.2%) 139 (19.8%) 423 (32.7%)  

 
Values are mean ± SD. APACHE II: Acute Physiology and Chronic Health Evaluation II; SOFA: Sequential Organ Failure Assessment. 
ICU: intensive care unit 
* p < 0.05, ** p < 0.01. 
 
Table 2. Model performance using full features 
 

Classifier Precision Sensitivity Specificity Accuracy AUROC 
5-fold CV      
 XGBoost 0.832 ± 0.039 0.915 ± 0.020 0.780 ± 0.044 0.868 ± 0.027 0.928 ± 0.023 
 CatBoost 0.832 ± 0.039 0.916 ± 0.018 0.771 ± 0.059 0.865 ± 0.031 0.932 ± 0.024 
 LightGBM 0.803 ± 0.039 0.897 ± 0.022 0.780 ± 0.046 0.856 ± 0.027 0.925 ± 0.025 
 Logistic Regression 0.737 ± 0.069 0.872 ± 0.040 0.655 ± 0.069 0.796 ± 0.040 0.863 ± 0.035 
Testing      
 XGBoost 0.779 0.876 0.801 0.850 0.921 
 CatBoost 0.803 0.888 0.837 0.869 0.926 
 LightGBM 0.784 0.876 0.823 0.857 0.923 
 Logistic Regression 0.713 0.849 0.688 0.792 0.852 

 
XGBoost, eXtreme Gradient Boosting; CatBoost, Categorical Boosting; LightGBM, Light Gradient Boosting Machine; AUROC, area 
under the receiver operating characteristic curve; CV, cross-validation. 
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illness, their nutritional status was good, leading the dieti-
tian to assess them as low risk. In Figure 6b, the AI pre-
dicted a low nutritional risk, while the dietitian deemed it 
 high risk. Within the AI model, three features (age, BMI, 
Haemoglobin) inclined towards low risk, while APACHE 
II and albumin tended towards high risk, resulting in an 
overall prediction of only an 18% probability of high risk. 
Although the severity of the disease was low, the patient's 
nutritional condition was poor, prompting the dietitian to 
consider it high risk. 
 
Comparative performance with the NUTRIC score 
To evaluate the predictive performance of the dietitian-as-
sessed nutrition risk model, we compared it to the NU-
TRIC score in predicting ICU stays exceeding 7 days using 
our dataset. Both models were assessed using receiver 

operating characteristic (ROC) curves, with the Area Un-
der the Curve (AUC) as the performance metric. 
While both models achieved AUC values above 0.5, indi-
cating predictive capability, the dietitian-assessed model 
demonstrated slightly superior discrimination with higher 
AUC values, despite the modest differences. These find-
ings suggest that the dietitian-assessed model may offer a 
more nuanced and clinically relevant tool for identifying 
high-risk patients in ICU settings, particularly for predict-
ing prolonged ICU stays, compared to the NUTRIC score 
(Figure 7). 

 
 
Figure 3. Receiver operating characteristics curves and decision curve analysis 

 
 
Figure 4. Global interpretation of Catboot. The APACHE II scores and age were positively correlated with nutritional risk, while albumin 
(Alb), BMI, and Haemoglobin (Hgb) levels were negatively correlated with nutritional risk 
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DISCUSSION 
In the study, we identified the predictive risk factors for 
nutrition in critically ill patients and developed a machine 
learning-based predictive model. Our findings revealed 
that models such as XGBoost, CatBoost, and LightGBM 
yielded superior predictive performance. These results un-
derscore the efficacy of high-performance gradient boost-
ing frameworks in accurately identifying nutritional risks.  

We further utilized explainable AI methods to identify 
key features associated with nutritional risk, yielding re-
sults that align with prior research. For example, previous 
studies have indicated a link between nutritional risk, low 
BMI, and adverse health outcomes, including increased 
mortality.15,16 Additionally, a positive correlation was ob-
served between high nutritional risk and elevated 
APACHE II scores.17 Furthermore, the introduction of nu-
tritional support was found to significantly improve dis-
ease severity.18 The findings suggest that the predictive 
model shows promise in identifying clinical nutrition-re-
lated risks. While the results are encouraging, further vali-
dation is required to fully confirm its effectiveness in clin-
ical settings.  

The prognosis for malnutrition in critically ill patients is 
undoubtedly poor. However, inflammation during the 
acute stage may be a reason why critically ill patients re-
quire nutrition support.2,19 Theoretically, critically ill pa-
tients with high nutrition risk would recover well after re-
ceiving optimal nutrition support. The Heyland et al obser-
vational study demonstrated that higher caloric intake re-
duced mortality in high nutrition risk patients.4  

However, a subsequent randomized controlled trial pre-
scribed full caloric feeding or trophic feeding in high nu-
trition risk patients, with hospital mortality rates of 24% 
and 19%, respectively.20 The hospital mortality rate 
seemed higher in the full caloric feeding group, but this 
difference did not reach statistical significance. In a post-
hoc analysis of the Permissive Underfeeding versus Target 
Enteral Feeding in Adult Critically Ill Patients (PermiT) 
study, there  was no di fference in 90-day mor- 
tality between high and low nutrition risk patients who  
received permissive underfeeding.21 The NUTRIC score  
consists of only six items, which may make it difficult to  

 

 
 
Figure 5. SHAP dependence plot of the CatBoost model in predicting nutrition risk. (a) Age, (b) APACHE II, (c) BMI, (d) albumin 
(ALB), (e) Haemoglobin (HGB).  
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accurately identify patients with high nutrition risk with 
limited information.  

Implementation of feeding protocols is another form of 
nutrition support that can help overcome feeding barriers. 
Feeding protocols can improve the efficiency of caloric in-
take.22 In a large randomized controlled trial, Ke et al. op-
timized nutrition support by implementing an evidence-
based feeding guideline.23 The eligible patients had at least 
one more organ system failure and expected ICU stay of 
more than 7 days. The intervention group received more 
enteral nutrition and less parenteral nutrition in the first 2 
days, but the intervention did not result in a significant re-
duction in 28-day all-cause mortality. The study did not 
find any improvement in outcomes, despite using much ev-
idence guided interventions, including NUTRIC score. 
Conversely, the NRS 2002 does include some nutrition 

parameters but lacks specific items for critically ill pa-
tients. Combining the NUTRIC and NRS 2002 scores did 
not yield better predictive values either.24 Due to the com-
plexity of critically ill patients, current nutrition risk eval-
uation tools might not suffice to replace the role of a regis-
tered dietitian in rating the nutrition risk of ICU patients.  

Our study found differences in clinical outcomes based 
on the nutrition risk groups as labelled by registered dieti-
tians. However, it's worth noting that nutrition risk evalua-
tion alone may not fully predict clinical outcomes without 
considering the impact of nutrition support.25-28 The pur-
pose of nutrition risk evaluation should be to guide clini-
cians in providing appropriate nutrition support. Due to the 
retrospective design of our study, we were unable to pro-
vide detailed information on caloric intake for each nutri-
tion risk group.   

 
 
Figure 6. Force plots for a patient: (a) predicted to be at high risk, but assessed as low risk by the dietitian (prediction 0.96). (b) pre-
dicted to be at low risk, yet considered high risk by the dietitian (prediction 0.18)  
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However, it is not feasible for a registered dietitian to be 
available 24/7 in the ICU, while an AI system could be. 
We can develop a nutrition risk prediction model  
by training AI to emulate the practices of registered  
dietitians in the ICU. In recent years, artificial intelligence 
and machine learning methods have been widely used in 
critically ill patients.10 However, few artificial intelligence 
models have been introduced to predict nutrition status in 
critically ill patients, with most models focusing on cancer 
patients.13 Given the complexity of critically ill patients 
and shortage of healthcare personnel, an artificial intelli-
gence model to help intensivists assess nutrition risk in 
critically ill patients is imperative.29 Our study has ad-
dressed this gap by developing a nutrition risk prediction 
model 

In our final model, we found that APACHE II, age, BMI, 
albumin, and haemoglobin were the five major features 
that influence nutrition risk. However, haemoglobin is a 
rare item in terms of assessing nutrition risk for registered 
dietitians. Anaemia is common in critically ill patients, 
with approximately two-thirds of patients having haemo-
globin levels less than 12 g/dL upon admission to the 
ICU.30,31 There are several reasons for anaemia in ICU pa-
tients, including bleeding, chronic disease, and malnutri-
tion, among others. Wu et al reported that critically ill pa-
tients with haemoglobin levels less than 10 g/dL were as-
sociated with higher one-year mortality in the surgical 
ICU.32 Rasmussen et al demonstrated that haemoglobin 
levels less than 10 g/dL were associated with greater than 
2.6 times higher 90-day mortality in patients with chronic 

 
 
Figure 7. Comparative performance of dietitian-assessed nutrition risk and the NUTRIC score 
 
 

 
 
Graphical abstract. 
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obstructive pulmonary disease and respiratory failure.33 
Taken together, anaemia may be one of the risk factors for 
poor outcomes in critically ill patients, which is consistent 
with our present findings. However, a well-conducted 
study is still needed to establish the relationship between 
anaemia and nutrition risk. 

Our research revealed instances where prediction results 
differed from dietitians' assessments. Two key reasons 
contribute to this discrepancy. Albumin Initially consid-
ered a robust nutritional indicator, Albumin was later 
found to be influenced by inflammation in the blood, lead-
ing to value decreases due to redistribution. Consequently, 
many nutrition screening tools exclude albumin. However, 
the 2021 American Society for Parenteral and Enteral Nu-
trition guidelines reintroduced Alb as a relevant marker for 
inflammation and malnutrition.34 Nonetheless, its accuracy 
can be compromised if patients receive albumin injections 
when transitioning from a ward to an ICU. 

Dietitians often rely on the patient's food intake status 
and weight changes before ICU admission to assess nutri-
tional risks. However, this information is frequently de-
scribed in text rather than systematically recorded, making 
it challenging to incorporate into machine learning fea-
tures.  

While our study demonstrated that artificial intelligence 
significantly aids registered dietitians with impressive ac-
curacy, it is important to acknowledge certain limitations. 
First, our study was conducted at a single centre, and alt-
hough our model exhibits high accuracy, external valida-
tion is essential to fortify the robustness of our present 
model. Second, certain informative features are recorded 
in language by nursing staff, and we have not yet analysed 
this information without employing a natural language pro-
cessing model. Third, the currently available data did not 
include information on body weight loss status prior to ad-
mission. Nevertheless, our dataset, collected from 1,994 
patients who underwent comprehensive nutritional risk as-
sessment, was labelled by six experienced dietitians after 
achieving consensus and has demonstrated good inter-rater 
reliability. 

 
Conclusions 
Machine learning is emerging as a novel contributor to 
clinical nutrition. Employing machine learning to predict 
patients' nutritional risk not only addresses the shortage of 
dietitians and the absence of clinical nutrition care during 
holidays but also provides healthcare professionals with in-
sights into patients' nutritional status. This allows for in-
creased attention and more timely, accurate nutritional 
support for patients at high nutritional risk. 
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